ETC 10 – Evaluation of Eurocode 7

Eurocode 7 Design Examples 2

Background

The International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) has established European Technical Committee 10 (ETC10) to "evaluate the ... geotechnical design process ... covered by ... Eurocode 7 by carrying out a number of design examples".

A set of Design Examples was studied in 2005, when characteristic values of soil parameters were provided. Details of the exercise are published in the Proceedings of the International Workshop organized by Dr Trevor Orr (Chairman of ETC10) and held in Dublin in March/April 2005. Proceedings can be ordered from www.tcd.ie/civileng/pdf/Eurocode 7.pdf.

'Design Examples 2'

A second set of Design Examples has now been developed, in which designers are asked:

- to select characteristic values from the available site investigation data
- to design the foundation according to Eurocode 7
- to complete the corresponding on-line questionnaire (available on the website)

These design examples involve selecting characteristic soil parameter values from the results obtained from different types of field and laboratory tests carried out at the site where the design examples are located. The designer is asked to assume that the sites involved are in his/her own country and to choose the appropriate National Annex accordingly.

A follow-up exercise will involve:

- repeating the foundation design using characteristic values selected by ETC10
- completing a follow-up questionnaire about this re-design

Instructions

Each design example comprises a specification (in PDF format) that you can download from www.eurocode7.com/etc10. The online questionnaire is also provided in PDF format so that you can prepare answers for the various questions (some of which ask for numerical values, others ask how you decided to do the design).

When you have completed the design and worked out your answers to the questions, you are asked to return to this website to submit your answers via our online questionnaire. If you encounter any difficulties with this process, please send an email to our webmaster and we will try to resolve them.

The Design Examples

- 1. Pad foundation with vertical central load on dense sand
- 2. Pad foundation with inclined load on boulder clay
- 3. Pile foundation in stiff clay
- 4. Earth and pore water pressures on basement wall
- 5. Embankment on soft peat
- 6. Pile foundation in sand

Reporting of results

The intention is for a second International Workshop to be held (in Pavia, Italy) in March or April 2010, to discuss the findings from this exercise. Details of the Workshop will follow.

Example 2.1 Pad foundation with vertical central load on dense sand

Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

The square pad foundation shown in Figure 2.1a is made from concrete with a weight density of 25 kN/m^3 and has an embedment depth of 0.8 m. The ground surface shown can reliably be assumed to be below any topsoil and disturbed ground.

The foundation is required to support the following characteristic loads:

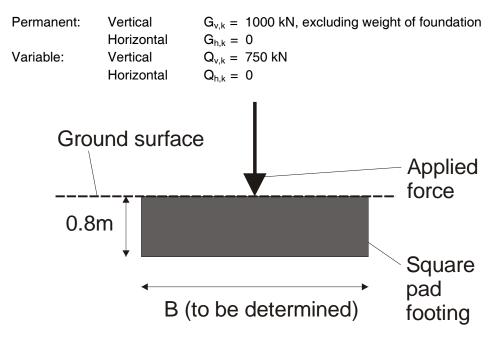


Figure 2.1a: Pad foundation (square on plan)

The soil consists of a very dense fine glacial outwash sand with a mean particle size of 0.14 mm. The soil has a bulk weight density of 20 kN/m³ and close to 100% relative density. The ground water level is 6 m below ground level. The water content above the water table is 11% and the degree of saturation is 71%. Bedrock underlies the sand at 8m depth.

A plan of the site is given in Figure 2.1b showing the locations of four CPT tests carried out on the site with respect to the centre of the proposed foundation. The results of the four CPT tests are plotted separately in Figures 2.1c (1-4) and all the q_c values are plotted together in Figure 2.1d and listed in Table 2.1a.

The foundation is to be designed to Eurocode 7 to determine the foundation width when the maximum allowable settlement is 25 mm. There is no need to consider any effects due to frost or vegetation. The foundation's design working life is 50 years.

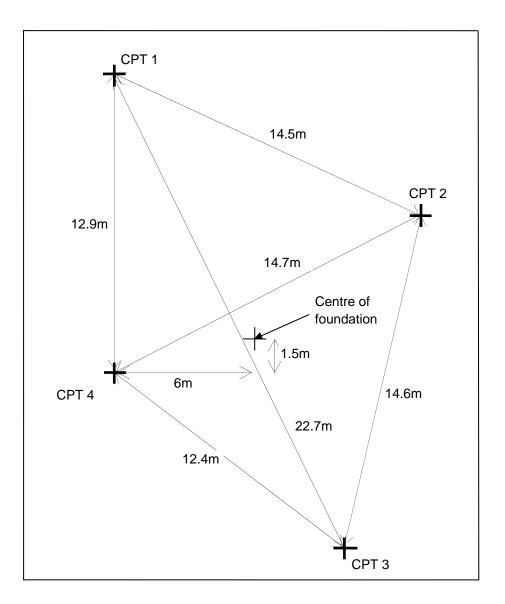


Figure 2.1b: Example 2.1 Site plan and location of CPT tests

Note: vertical axis on following diagram should read 'Depth below ground level (m)'

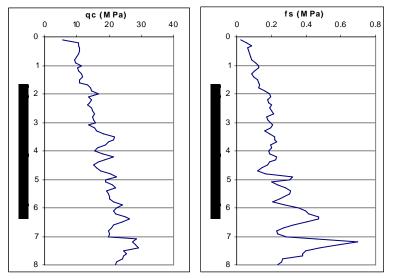


Figure 2.1c(1): CPT 1 test results - $q_{c and} f_s$

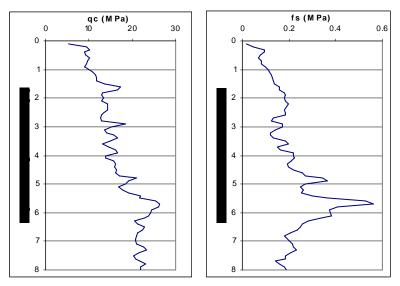


Figure 2.1c(2): CPT 2 test results - $q_{c and} f_{s}$

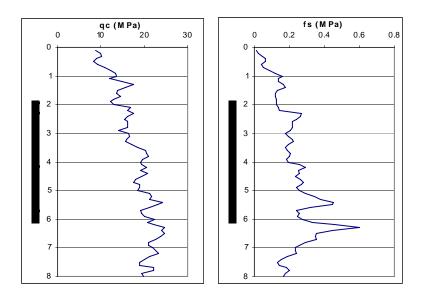


Figure 2.1c(3): CPT 3 test results - q_c and f_s

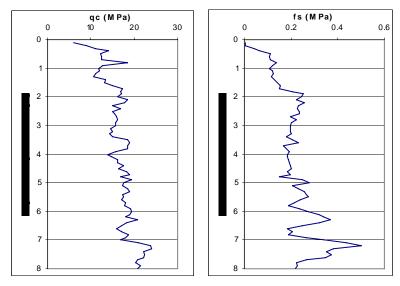


Figure 2.1c(4): CPT 4 test results - q_{c} and f_{s}

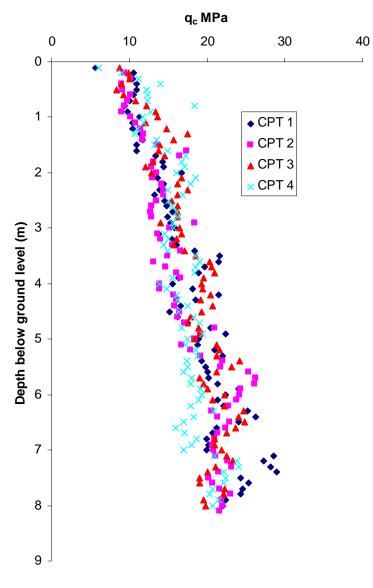


Figure 2.1d: Combined plot of CPT test results

Table 2.1a: CPT test results

(data available in separate Excel spreadsheet)

				рт 2	CP	Т 3	CP	Т 4
Dept h	qc	fs	qc	fs	qc	fs	qc	fs
(m)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
0.1	5.62	0.0236	5.41	0.018	8.78	0.0091	5.99	0.0057
0.2	10.56	0.0565	9.37	0.0456	9.89	0.0256	9	0.0061
0.3	10.4	0.0835	10.1	0.0928	10.05	0.0453	11.14	0.044
0.4 0.5	10.95 10.92	0.0619 0.068	8.94 9.14	0.0959 0.0751	8.96 8.38	0.0616 0.0633	14.01 12.23	0.0648 0.1107
0.5	10.92	0.0763	10.1	0.0679	9.27	0.0038	12.25	0.1107
0.7	10.01	0.0805	9.78	0.0829	10.78	0.0533	12.36	0.1117
0.8	9.34	0.087	9.38	0.0811	12.17	0.0883	18.37	0.1392
0.9	9.72	0.1071	8.95	0.1003	13.42	0.1222	12.79	0.1211
1	11.35	0.127	10.18	0.1098	13.63	0.1603	11.72	0.1056
1.1	10.36	0.1287	10.82	0.1156	12.03	0.1362	11.89	0.1198
1.2 1.3	10.4 11.46	0.1024 0.0858	11.48 11.81	0.1239 0.1266	14.79 17.5	0.1366 0.167	11.06 10.71	0.1228 0.1152
1.3	11.40	0.0056	11.69	0.1200	15.68	0.1789	13.47	0.1152
1.5	10.9	0.1198	13.58	0.1363	13.83	0.1326	13.23	0.1407
1.6	10.9	0.1285	17.3	0.1596	13.7	0.1224	14.96	0.1539
1.7	13.32	0.1344	16.51	0.157	14.51	0.1214	17.2	0.1497
1.8	14.27	0.1283	13.15	0.1806	13.03	0.1272	16.74	0.2042
1.9	14.45	0.1594	12.81	0.186	12.15	0.1256	17.11	0.252
2 2.1	16.74	0.1895	13.49	0.1805	12.87	0.1252	16.14	0.2449
2.1	13.68 14.45	0.1963 0.1812	12.98 14.21	0.1863 0.1973	16.76 16.24	0.1384 0.1452	18.47 17.88	0.2218 0.2575
2.2	13.91	0.1863	14.36	0.1973	17.48	0.2689	14.89	0.2328
2.4	13.24	0.1997	14.38	0.1819	16.16	0.2628	16.82	0.2287
2.5	14.49	0.1891	13.46	0.1843	15.45	0.2399	15.02	0.2336
2.6	14.82	0.2034	12.83	0.1839	16.26	0.2196	15.51	0.2362
2.7	15.52	0.2155	12.76	0.1333	16.19	0.2172	16.03	0.1958
2.8 2.9	14.9	0.1703	12.84	0.1251	16.2	0.2146	16.26 15.61	0.221
2.9	15.32 15.83	0.1804 0.1981	18.39 15.14	0.1727 0.1697	13.98 16.4	0.2036 0.1766	15.01	0.1997 0.1957
3.1	13.77	0.2046	13.66	0.1425	16.69	0.1971	14.57	0.1989
3.2	15.46	0.1968	14.07	0.1205	16.03	0.2173	15.03	0.1968
3.3	16.06	0.1614	15.58	0.1205	15.66	0.2256	14.38	0.2025
3.4	18.37	0.1873	16.65	0.1337	17.1	0.1945	14.89	0.1804
3.5	21.66	0.2161	14.96	0.1833	18.51	0.1782	18.51	0.2051
3.6 3.7	21.45 19.73	0.2167 0.2286	13.09 14.6	0.1957 0.1481	20.37 20.58	0.191 0.2043	19 18.57	0.2327 0.1652
3.8	18.97	0.2280	16.14	0.1481	20.58	0.2043	18.43	0.1052
3.9	16.32	0.2003	16.64	0.218	19.59	0.1829	15.58	0.1939
4	15.52	0.1845	13.87	0.2195	19.24	0.1955	13.94	0.1841
4.1	18.12	0.1878	13.88	0.2212	19.37	0.2548	14.76	0.1839
4.2	21.49	0.2314	15.71	0.2099	20.49	0.2896	16.08	0.1883
4.3	18.51	0.2241	16.12	0.1947	19.2	0.2535	16.18	0.1946
4.4 4.5	16.59 15.23	0.1911 0.181	15.82 16.44	0.1956 0.2184	20.67 19.29	0.2575 0.2371	17.46 16.37	0.1967 0.2006
4.5	16.23	0.181	16.17	0.2164	19.29	0.2371 0.2647	18.26	0.2006
4.7	17.48	0.1233	17.15	0.2688	17.52	0.2778	18.99	0.1959
4.8	20.49	0.1666	20.97	0.3435	18.88	0.2666	16.76	0.1509
4.9	22.4	0.3226	19.19	0.3638	18.99	0.2417	19.42	0.2472
5	18.86	0.3022	18.44	0.2685	18.39	0.2589	17.49	0.2781
5.1	18.79	0.1995	16.77	0.247	21.25	0.2896	17.22	0.2057
5.2 5.3	20.95 21.94	0.2331 0.2826	17.83 19.13	0.2593 0.2539	21.63 21.26	0.3431 0.377	18.56 18.82	0.232 0.2568
5.3	21.94 19.34	0.2020	21.96	0.2539	21.20	0.377	17.37	0.2568
0.7	10.04	0.0000	21.00	0.2004	27.10	0.7700	17.07	0.2014

ETC10 Design Example 2.1 (version 07/06/2009)

5.5	19.79	0.3037	21.79	0.3646	23.1	0.4483	17.5	0.2745
5.6	20.06	0.272	25.37	0.5256	21.26	0.3223	17.03	0.2394
5.7	20.21	0.2469	26.23	0.5613	19.04	0.2374	18.02	0.2141
5.8	21.38	0.2079	26.15	0.4091	19.49	0.255	17.86	0.1906
5.9	24.07	0.2759	24.37	0.3736	20.01	0.2432	19.2	0.2357
6	22.39	0.3553	24.16	0.3778	22.3	0.277	19.3	0.2755
6.1	21.4	0.3948	23.8	0.3794	20.67	0.3302	18.95	0.3225
6.2	22.06	0.4171	22.8	0.3397	22.23	0.4567	17.92	0.3375
6.3	25.15	0.4709	20.55	0.2823	24.64	0.6028	20.81	0.3665
6.4	26.22	0.474	21.33	0.2552	24.05	0.4456	18.32	0.3227
6.5	24.08	0.4017	22.85	0.2486	24.78	0.3561	17.01	0.2473
6.6	21.27	0.3302	22.4	0.2364	23.66	0.3468	15.9	0.1839
6.7	20.71	0.268	21.32	0.2045	22.54	0.353	17.08	0.2063
6.8	19.95	0.2294	20.93	0.1784	21	0.2887	18.61	0.1867
6.9	20.17	0.2382	20.75	0.1945	20.99	0.2573	18	0.2669
7	19.91	0.2898	20.87	0.2028	21.9	0.2354	16.93	0.3406
7.1	28.56	0.4545	21.03	0.2127	22.5	0.2319	20.94	0.4388
7.2	27.3	0.6968	22.68	0.2196	23.28	0.2376	23.82	0.5012
7.3	28.15	0.5824	23.21	0.2312	21.13	0.1858	24.02	0.3832
7.4	29	0.4758	21.44	0.2045	20.11	0.157	22.17	0.3495
7.5	24.37	0.3958	20.23	0.1833	18.98	0.1341	22.38	0.3718
7.6	25.31	0.3811	20.76	0.1839	18.99	0.1403	22.16	0.3466
7.7	24.62	0.38	21.58	0.1433	22.24	0.1832	20.69	0.267
7.8	24.3	0.2647	23.01	0.1574	22.11	0.2003	20.28	0.2246
7.9	22.44	0.2615	21.88	0.1779	19.49	0.1754	21.43	0.2264
8	21.99	0.2348	22.02	0.1903	19.85	0.1667	20.72	0.2184

Example 2.1 Pad foundation with vertical central load on dense sand Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Que	stion	Instruction	Answer		
			ENERAL		
1	Please provide your contact details in case we need to clarify your submission*	*Will be kept strictly confidential	Name Affiliation Email address		
2	How many structures of this kind have you previously designed?	Tick one	□ None □ 1-2 □ 3	-6 D More than 6	
3	Having completed your design to Eurocode 7, how confident are you that the design is sound?	Tick one	□ Very unsure □ U	nsure 🗆 Confident E] Very confident
4	How did you account for the location of cone tests relative to the foundation?	Tick one	 Did not consider t Considered neare Considered 'avera Considered trend Other (specify) 	est test only age' of all tests of all tests, biased tov	vards nearest
5	Please explain the reasons for your answer to Q4	Free text			
	·	SERVICEAB	LITY LIMIT STATE		
6	Which parameters did you use for the SLS design of the spread foundation?	Tick all that apply	□ Young's modulus □ Shear modulus of □ Other (specify)		
7	What correlations did you use to derive soil parameter values (if used) for the SLS verification? If more than one, please list others below	Free text	Description: Author: Title: Pages:		
7a	Any other correlations? (please	Free text	Tages.		
8	give same info as above) What assumptions did you make in choosing these correlations?	Free text			
9	How did you account for any variation in parameters with depth?	Tick one	☐ Ignored variation ☐ Assumed bi-linear ☐ Other (specify)	r variation D Assum	ned linear variation ned stepped variation
10	Please explain the reasons for your answer to Q9	Free text			
11	What is the characteristic value of q_c at these depths?	Provide values in units of MPa	At 1 m, q _c =	At 2 m, q _c =	At 4 m, q _c =
12	What is the characteristic value of E' for a linear elastic calculation at these depths?	Provide values in units of MPa	At 1 m, E´ =	At 2 m, E´ =	At 4 m, E´=
13	How did you assess these values?	Tick all that apply	 □ From an existing s □ From a published □ Comparison with □ From the soil desc □ Other (specify) 	cription, not using the	 data
14	Which calculation model did you use to determine settlement?	Tick one	□ Annex F.1 from E □ Annex D.3 from E □ Annex D.5 from E □ Alternative from n □ Alternative from n	N 1997-1 Annex F. N 1997-2 Annex D N 1997-2 ational annex (specify ational standard (spec alysis Finite differe	9.4 from EN 1997-2 9 sify)
15	What width does the foundation need to avoid a serviceability limit state?	Provide value in m	B _{SLS} =		
			E LIMIT STATE		
16	Which parameters did you use for the ULS design of the spread foundation?	Tick all that apply	□ Cone resistance o □ Angle of shearing □ Angle of interface □ Other (specify)	friction δ	ction f_s fective cohesion c´

17	What correlations did you use to	Free text	Description:			
	derive soil parameter values (if		Author:			
	used) for the ULS verification? If more than one, please list others		Author:			
	below		Title:			
			Pages:			
17a	Any other correlations? (please give same info as above)	Free text				
18	What assumptions did you make in choosing these correlations?	Free text				
19	What is the characteristic value of	Provide	At 1 m, φ´ =	At 2 m, φ	<i>´</i> =	At 4 m, ¢´ =
	\[\oightarrow for the set of	values in degrees				
20	Which calculation model did you	Tick one	Annex D fror			
	use to determine bearing resistance?			iven in a nationa iven in a nationa		
				Meyerhof D Bri		
			□ Finite eleme	nt analysis 🛛 Fi		
01	M/high goundary's National Armourdial	Erectorit	□ Other (specif	fy)		
21	Which country's National Annex did you use to interpret EN 1997-1?	Free text				_
22	Which Design Approach did you use for verification of the Ultimate	Tick one		oach 1 Combina oach 1 Combina		2
	Limit State (ULS)?			oach 1 Combina		
			Design Appr	oach 2 🛛 Des		h 2*
			Design Appr			
23	What values of partial factors did	Provide	Other (specified of the specified of th	ry)	2 nd combi	nation (if used)
23a	you use for this ULS verification?	values		1	2 001101	. ,
			γG	γα	γg	γα
			γ_{ϕ}	γс	γ_{ϕ}	γς
			γ̈́Rv	γRd	γRv	γRd
24	What width does the foundation	Provide	B _{ULS} =			
	need to avoid an ultimate limit state?	value in m				
25	What are the structural forces (at its	Provide	Design bending	g moment M _{Ed}	Design sh	ear force V _{Ed} =
	centre-line) that the foundation	values in	=			
	must be designed for according to Eurocode 2?	kNm and kN				
		CONCLUD	ING QUESTIONS	3	I	
26	What other assumptions did you	Free text				
	need to make to complete your design?					
27	Please specify any other data that	Free text				
	you would have liked to have had to design this type of foundation					
28	How conservative do you consider	Tick one	□ Verv conserv	vative □ Conse	rvative DA	bout right
	your previous national practice to			ive Very unco		
	be for this design example?					
29	How conservative do you consider Eurocode 7 (with your National	Tick one		vative □ Conse ive □ Very unco		dout right
	Annex) to be for this example?					
30	How does your Eurocode 7 design	Tick one		conservative		rvative
	compare with your previous			me 🗆 Less cons	servative	
31	national practice? Please provide any other relevant	Free text	☐ Much less co	onservative		
51	information needed to understand	THEE LEXT				
	your solution to this design exercise					
	PLEASE SUBMIT YOU				Example 2.1	<u> </u>
	TH/	ANK YOU FOR	YOUR CONTRIE	SUTION!		

Example 2.2 Pad foundation with inclined eccentric load on boulder clay

The square pad foundation shown in Figure 2.2a, with an embedment depth of 0.8 m, which is below any topsoil and disturbed ground, is required to support the following characteristic loads:

Permanent:	Vertical	$G_{v,k}$ = 1000 kN, excluding weight of foundation
	Horizontal	$G_{h,k} = 0$
Variable:	Vertical	$Q_{v,k} = 750 \text{ kN}$
	Horizontal	$Q_{h,k} = 500 \text{ kN}$, at 2m above the top of the foundation
Concrete weig	ht density	$\gamma_c = 25 \text{ kN/m}^3$

The variable loads are independent or each other. Assume the variable loads are repeated several times at this magnitude.

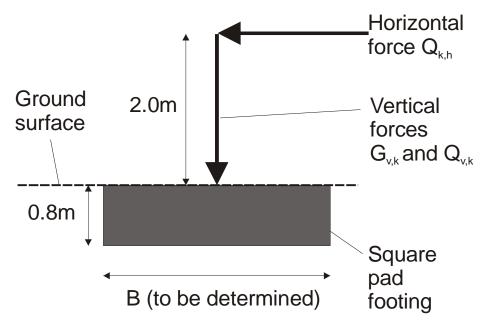


Figure 2.2a: Pad foundation (square on plan)

The soil consists of boulder clay. A site plan showing the location of the foundation and the locations where five SPT tests were carried out is given in Figure 2.2b. N values obtained from SPT tests are plotted in Figure 2.2c, the water contents and index tests determined from samples are presented in Figure 2.2d. The soil has a bulk weight density of 21.4 kN/m³ and the ground water level is 1.0 m below the ground level. The width of the foundation when designed to Eurocode 7 is to be determined, assuming the foundation is for a conventional concrete framed structure. There is no need to consider any effects due to frost or vegetation. The foundations' design working life is 50 years.

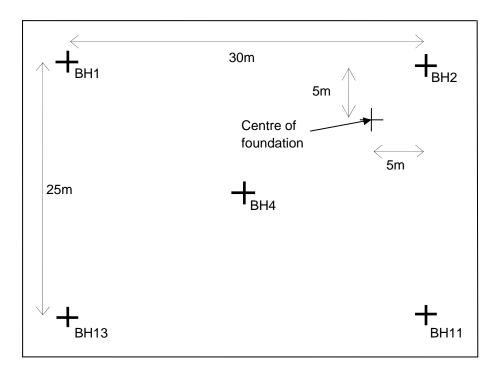


Figure 2.2b: Example 2.2 Site plan and location of SPT tests

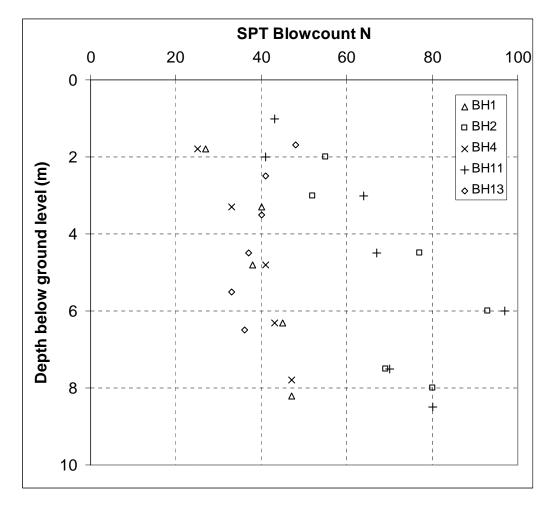


Figure 2.2c: SPT N values recorded at the site

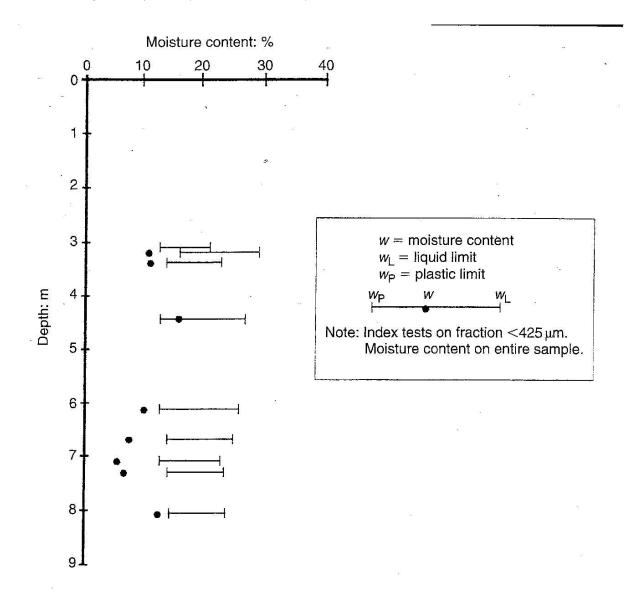


Figure 2.2d: Measured water contents and index values

Design Example 2.2 BOREHOLE No. 1

Water Strikes	T w	ater Levels F	Recorded Dur	ing Boring		
1. None 2. 3.	Hole Depth Casing Depth Water Level			·		
Remarks		1				
	Description	Scale Depth		Ref. No.		amples & S.P.T. Depth
TOP SO	(L	0.30			///-	
gravel	tiff brown sandy Ly CLAY with cobbles er Clay)			99998 9351	U - D	1.00 1.50
				9905 9352	D D	2.00 ^{(1.8} 2.50
	•	2.90		9997	D	3.00 (3.3
gravell	iff black silty sandy y CLAY with cobbles lders (Boulder Clay)			9920	D	(4.8 5.00
			x x x x x x x x	9923	D	6.00 (6.3
		8,00		9921 9924	D D	7.50 (7.8 8.00

Figure 2.2e: Borehole Log 1

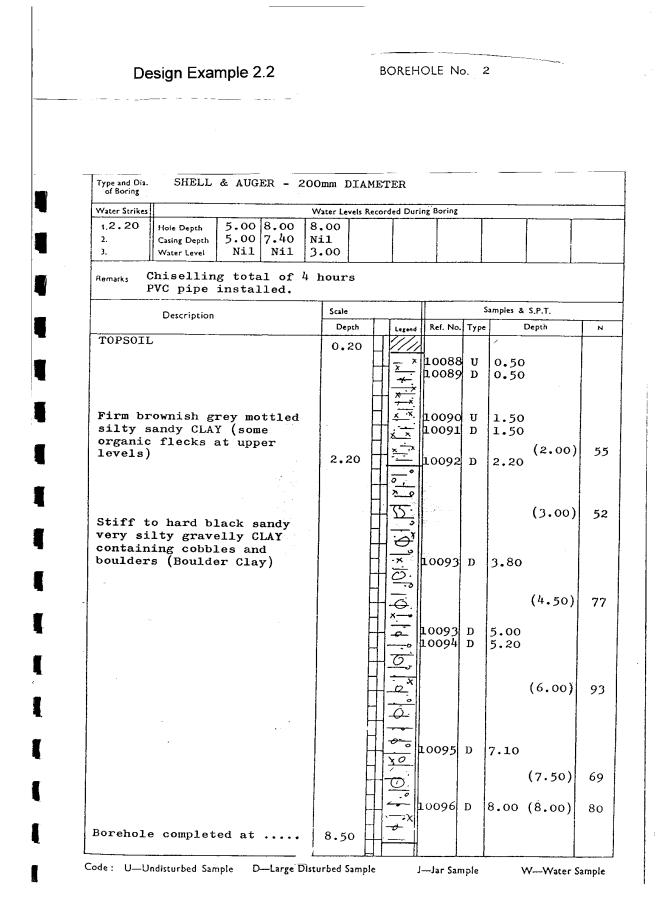


Figure 2.2f: Borehole Log 2

ı.

Design Example 2.2

BOREHOLE No. 4

Water Strikes				Water Lev	Vater Levels Recorded During Boring									
1. 3.20 2. 3.	Hole Depth Casing Depth Water Level													
Remarks S	Geepage a	t 3.20) metr	es. Sea	aled	off i	n Bla				•			
	Description			Scale		1			iamples 8		<u>т.</u>			
TOPSOII	,			0.		Legend	Ref. No.	Туре		Depth	И			
Firm to gravell	stiff b y CLAY (rown s Boulde	andy or Clay			· 0 [; 0 · [· [•] •]	99 1 4	D	1.50) (1.80)	25			
	. <i>1</i> .	-		3.2	20		9202	D	3.20) (3.30)	33			
gravell	iff blac] y CLAY w: lders (Bo	ith co	bbles							(4.80)	41			
						××1.6×+ 10.1	9989	D	6.00	(6.30)	43			
				8.0	0	0 × × 0	9990	D	8.00	(7. 80)	47			

Figure 2.2g: Borehole Log 4

BOREHOLE No. 11

SHELL & AUGER - 450mm DIAMETER Type and Dia. of Boring Water Levels Recorded During Boring Water Strikes 6.30 8.50 1.2.80 8.50 Hole Depth 6.30 7.30 2. Casing Depth 3. Water Level Nil Nil 3.50 Total - 3 hrs. chiselling Remarks PVC pipe installed. Samples & S.P.T. Scale Description Ref. No. Type Depth Depth N Legend TOPSOIL 0.30 10096 U 10097 D 0.50 Stiff brown silty very stony 0.50 CLAY, some cobbles <u>~ x</u> 1.00 (1.00)43 ç -10098 D 1.50 $\overline{\mathbf{Q}}$ Stiff brown sandy gravelly 1.50 (Abortive) U 0. CLAY with cobbles (Boulder (2.00) 41 Clay) o ō, 3.00 0 10099 D 3.00 (3.00) 64 9 Very stiff black sandy silty gravelly CLAY, cobbles and some boulders (Boulder Clay) 10100 D ò, 4.50 (4.50) 67 σ (6.00) 97 6.50 0 (7.50) 70 x 10102 D 7.80 U. <u>Z</u>x (8.50)Borehole completed at 80 9.00 Code : U-Undisturbed Sample D-Large Disturbed Sample J-Jar Sample W-Water Sample

Figure 2.2h: Borehole Log 11

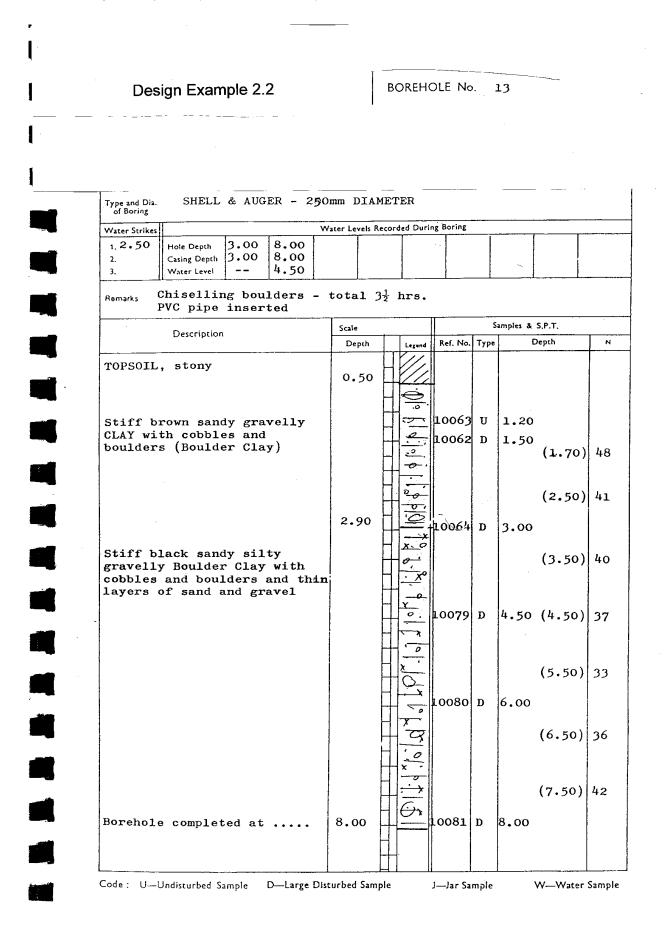
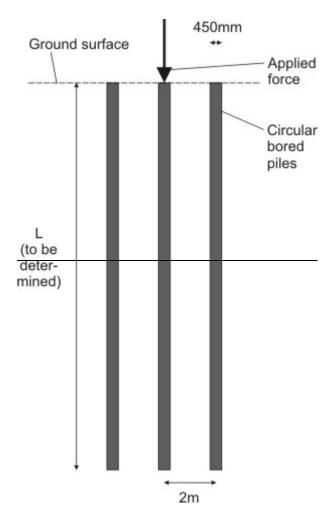


Figure 2.2i: Borehole Log 13

Example 2.2 Pad foundation with inclined eccentric load on boulder clay Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Que	stion	Instruction	Answer		
			ENERAL		
1	Please provide your contact details	*Will be kept	Name		
	in case we need to clarify your	strictly	Affiliation		
	submission*	confidential	Email address		
2	How many structures of this kind have you previously designed?	Tick one	□ None □ 1-2 □ 3		
3	Having completed your design to Eurocode 7, how confident are you that the design is sound?	Tick one	□ Very unsure □ U		Very confident
4	How did you account for the location of boreholes relative to the foundation?	Tick one	 Did not consider b Considered neare Considered 'avera Considered trend Other (specify) 	st borehole only age' of all boreholes of all boreholes, bias	sed towards nearest
5	Please explain the reasons for your answer to Q4	Free text			
		SERVICEAB	LITY LIMIT STATE		
6	Which parameters did you use for the SLS design of the spread foundation?	Tick all that apply	 □ Water content w □ SPT blow count N □ Undrained Young's r □ Drained Young's r ratio v □ Shear modulus of □ Other (specify) 	□ Corrected SPT 's modulus of elastic nodulus of elasticity elasticity G □ Pern	blow count (N ₁) $_{60}$ ity E _u E ^{$'$}
7	What correlations did you use to derive soil parameter values (if used) for the SLS verification? If more than one, please list others	Free text	Description: Author:		
	below		Title:		
			Pages:		
7a	Any other correlations? (please give same info as above)	Free text			
8	What assumptions did you make in choosing these correlations?	Free text			
9	How did you account for any variation in parameters with depth?	Tick one	□ Ignored variation v □ Assumed bi-linear □ Other (specify)	variation 🛛 Assu	med linear variation med stepped variation
10	Please explain the reasons for your answer to Q9	Free text			
11	What is the characteristic value of N at these depths?	Provide uncorrected values	At 1 m, N =	At 2 m, N =	At 4 m, N =
12	What is the characteristic value of E_u for a linear elastic calculation at these depths?	Provide values in units of MPa	At 1 m, E _u =	At 2 m, E _u =	At 4 m, E _u =
13	How did you assess these values?	Tick all that apply	 □ From an existing s □ From a published □ Comparison with a □ From the soil desc □ Other (specify) 	standard (specify) correlation (specify) a previous design cription, not using the	 e data
14	Which calculation model did you use to determine settlement?	Tick one	 Annex F.1 from E Annex F.3 from E Alternative from n Alternative from n Finite element ana Other (specify) 	N 1997-1	fy) … ecify) …
15	What limiting values of settlement and tilt are appropriate for this foundation?	Provide values in mm and 1/x	C_d = (settlement) C_d = (tilt)		
16	What width does the foundation need to avoid a serviceability limit state?	Provide value in m	B _{SLS} =		


17 Which parameters did you use for the ULS design of the spread foundation? Tick all that apply Water content w □ Plasticity index i ▷ Indication i ○ Permeability k 18 What correlations did you use to derive soil parameter values (if used) for the ULS verification? If more than one, please list others below Free text Description: Angle of shearing resistance φ' □ Effective cohesion c' □ Angle of interface friction s̀ □ Permeability k 18 What correlations did you use to derive soil parameter values (if used) for the ULS verification? If more than one, please list others below Free text Description: Author: Title: Pages: Angle of shearing resistance? At 1 m, c ₀ = At 4 m, c ₀ = values in values in the c ₀ at these depths? At 1 m, c ₀ = values in values of the values in presistance? At 2 m, c ₀ = At 4 m, c ₀ = values in values to interpret EN 1997-1 At 4 m, c ₀ = values in values to interpret EN 1997-1? 20 Which country's National Annex (did you use to interpret EN 1997-1? Tick one values in you use to interpret EN 1997-1? Incervative given in a national annex (specify) □ Design Approach 1 Combination 1 only □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 1 only □ Design Appr			ULTIMAT	E LIMIT STATE							
derive soil parameter values (if used) for the ULS verification? (if below Author: Title: Pages: Title: Pages: Pages: Title: Title	17	the ULS design of the spread		□ SPT blow co □ Undrained sh □ Angle of shea □ Angle of inter	unt N \Box Corre- near strength c _u aring resistance rface friction δ	ected SPT b ∳´ □ Effec	blow count (N ₁) ₆₀				
used) for the ULS verification? If more than one, please list others below Author: Title: Pages: 18a Any other correlations? (please give same info as above) Free text give same info as above) 19 What assumptions did you make in choose data support the correlations? Provide values in units of kPa 20 What is the characteristic value of c, at these depths? Provide values in units of kPa At 1 m, cu = At 2 m, cu = At 4 m, cu = 21 Which calculation model did you use to determine bearing resistance? Tick one Anternative given in a national annex (specify) = Atternative given in a national standard (specify) = Terzaghi E Meyerhof = Brink-Hansen = Free text 22 Which calculation model did you use to interpret EN 1997-1 Dates antive given in a national annex (specify) = Terzaghi E Meyerhof = Brink-Hansen = Free text 23 Which Design Approach did you use to interpret EN 1997-1? Tick one E Design Approach 1 Combinations 1 and 2 24 What values of partial factors did you use for this ULS verification? Provide values in matchinal factors did you use for this ULS verification? Provide values in matchinal state? Ym 24 What values of partial factors did you use for this utthe foundation must be designed for according to the submation must be designed for according to the value in matchina matchina matchi	18		Free text	Description:	* *						
18a Any other correlations? (please give same info as above) Free text give same info as above) 19 What assumptions of you make in concernations? Free text values in units of kPa 20 What is the characteristic value of context of context of the calculation model id you use in in a rational annex (specify) antits of kPa At 1 m, cu = At 2 m, cu = At 4 m, cu = 21 Which calculation model id you use for determine bearing resistance? Tick one Density of the context of the determine bearing resistance? At 1 m, cu = At 2 m, cu = At 4 m, cu = 22 Which country's National Annex did you use for verification of the Ultimate Limit State (ULS)? Free text you use to interpret EN 1997-1? Design Approach 1 Combination 1 only 23 Which country's National Annex did you use for this ULS verification? Free text you use for this ULS verification? Tick one Design Approach 1 Combination 1 only 24 What values of partial factors did you use for this ULS verification? Provide values in min state? Ya Ya Ya Ya 25 What with does the foundation next be developed to axoid an ultimate limit state? Provide values in min state? Design bending moment M _{Ed} Design shear force V _{Eg} = 26 What with does the foundation next be developend pracecording to mak Min Ma kN <		used) for the ULS verification? If more than one, please list others									
18a Any other correlations? (please give same indo as above) Free text 19 What assumptions did you make in choosing these correlations? Free text 20 What is the characteristic value of c, at these depths? Free text 21 Which calculation model did you uses to determine bearing resistance? Provide values in units of kPa At 1 m, c _u = At 2 m, c _u = At 4 m, c _u = 21 Which calculation model did you use to determine bearing resistance? Tick one □ Annex D from EN 1997-1 □ □ Alternative given in a national annex (specify) □ Terzaghi □ Meyerhoi □ Brinite difference analysis 22 Which country's National Annex did you use to interpret EN 1997-1? Free text □ Other (specify) □ Design Approach 1 Combinations 1 and 2 23 Which beging Approach did you use for verification of the Ultimate Limit State (ULS)? Tick one □ Design Approach 1 Combination 2 nhy □ Design Approach 3 □ Other (specify) □ Other (specify) 24 What values of partial factors did you use for this ULS verification? Provide values 1 st combination 2 rd combination (if used) 7% ? ? Nor ? ? ? 24 What values of partial factors did you use for this ULS verification? Provide value in m state? <		below		Titte:							
give same info as above) Free text 19 What is the characteristic value of c, at these depths? Provide values in units of kPa At 1 m, cu = At 2 m, cu = At 4 m, cu = 21 Which calculation model did you use to determine bearing resistance? Tick one □ Annex D from EN 1997-1 Att a m, cu = At 4 m, cu = At 4 m, cu = 22 Which calculation model did you use to determine bearing resistance? □ Atternative given in a national atomat (specify) □ Atternative given in a national standard (specify) □ Terzaghi □ Meyerhof □ Brinch-Hansen □ Frinte difference analysis □ Other (specify) □ Terzaghi □ Meyerhof □ Brinch-Hansen □ Frinte difference analysis □ Other (specify) □ Terzaghi □ Meyerhof □ Design Approach 1 Combinations 1 and 2 23 Which country's National Annex did you use to interpret EN 1997-1? Free text 24 What values of partial factors did you use for this ULS verification? Tick one 244 What values of partial factors did you use for this ULS verification? Provide values 25 What are the structural forces (at its certerine) that the foundation must be designed for according to values in kNm and NN 26 What are the structural forces (at its certerine) that the foundation must be designed for according to values in kNm and NN Design bending moment Mea Design shear force V _{Ed} = = = = 1 Mout math N Design shear force V _{Ed} = = = 1 Mout math N	10-		Free test	Pages:							
choosing these correlations? Provide values in units of KPa At 1 m, cu = At 2 m, cu = At 4 m, cu = 20 What is the characteristic value of c, at these depths? At 1 m, cu = At 2 m, cu = At 4 m, cu = 21 Which calculation model did you use to determine bearing resistance? Tick one □ Annex D from EN 1997-1 □ Alternative given in a national annex (specify) □ Terzaghi □ Meyerhof □ Brinch-Hansen □ Finite element analysis □ Other (specify) □ Terzaghi □ Meyerhof □ Brinch-Hansen □ Finite element analysis 22 Which country's National Annex did you use to interpret EN 1997-17 Free text □ Design Approach 1 Combinations 1 and 2 □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 2 only □ Design Approach 2 □ Design Approach 3 □ Other (specify) 24 What walues of partial factors did you use for this ULS verification? Provide values 1 st combination 2 ^{tw} combination (if used) 25 weed to avoid an ultimate limit state? Provide values in kNm and kN Provide values in kNm and kN Design bending moment M _{Ed} Design shear force V _{Ed} = = 26 What width does the foundation need to avoid an ultimate limit state? Free text Design bending moment M _{Ed} Design shear force V _{Ed} = = 27 What other assumptions did you need to make to complete your design? Free text	Toa	give same info as above)	Fiee lext								
20 What is the characteristic value of values in units of kPa At 1 m, cu = At 2 m, cu = At 4 m, cu = At 5 m, cu = At 5 m, cu = At 4 m, cu = At 4 m, cu = At 5 m, cu = At 5 m, cu = At 4 m, cu = At 4 m, cu = At 5 m, cu = At 4 m, cu = At 4 m, cu = At 5 m, cu =	19		Free text								
use to determine bearing resistance? □ Alternative given in a national standad (specify) □ Terzaghi □ Meyerhof □ Brinch-Hansen □ Finite element analysis □ Finite difference analysis □ Other (specify) 22 Which country's National Annex did you use to interpret EN 1997-17 Free text 23 Which Design Approach di you use to interpret EN 1997-17 Free text 24 What values of partial factors did you use for this ULS verification? Tick one □ Design Approach 1 Combination 1 only □ Design Approach 2 □ Design Approach 2 □ Design Approach 2 □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 2 only □ Design Approach 1 Combination 1 only 24 What values of partial factors did you use for this ULS verification? Provide values 1 ^{at} combination 2 nd combination (if used) 76 76 76 76 76 76 78h 79n 78h 78h 78h 26 What width does the foundation meed to avoid an utimate limit state? Provide values in kNm and kN Bults = Design bending moment M _{Ed} Design shear force V _{Ed} = 27 What other assumptions did you need to make to complete your design? Free text you would have liked to have had tot design this type of foundation per to unake to consider Free text you would have liked to have had tot design this type of foundation powould have liked to h	20	What is the characteristic value of c _u at these depths?	values in			u =	At 4 m, c _u =				
you use to interpret EN 1997-1?	21	use to determine bearing	Tick one	□ Alternative gi □ Alternative gi □ Terzaghi □ □ Finite elemer	iven in a nationa iven in a nationa Meyerhof □Br nt analysis □F	al standard inch-Hanse	(specify) n				
23 Which Design Approach did you use for verification of the Ultimate Limit State (ULS)? Tick one □ Design Approach 1 Combination 1 only 24 What values of partial factors did you use for this ULS verification? Provide values □ Design Approach 3 □ Design Approach 3 24 What values of partial factors did you use for this ULS verification? Provide values 1 st combination (if used) 24 What values of partial factors did you use for this ULS verification? Provide values 1 st combination 2 nd combination (if used) 25 What width does the foundation need to avoid an ultimate limit state? Provide value in m BuLs = BuLs = 26 What are the structural forces (at its centreline) that the foundation must be designed for according to Eurocode 2? Provide values in kNm and kN Design bending moment M _{Ed} Design shear force V _{Ed} = 27 What other assumptions did you need to make to complete your design? Free text Free text Provide values in kNm and kN Provide values in kNm and kN Use you would have liked to have had to be foundation Free text 28 Please specify any other data that you would have liked to have had to be for this design example? Free text Unconservative □ Conservative □ About right 29 How conservative do you consider your previous na	22		Free text								
24a you use for this ULS verification? values YG YG YG YQ YG YG YG YQ YG YQ YG YG YG YQ YQ YG YG YQ YG YQ YG YG YQ YQ YQ YG YR YG YQ YQ YG YR YG YR YG YG YR YR YR YR YR YR YR YR YR YR YR YR YR YR YR Values in kste? Provide values in kN BULS = 26 What are the structural forces (at its centreline) that the foundation must be designed for according to kNM and kN Design bending moment MEd Design shear force VEd = 27 What other assumptions did you need to make to complete your design? Free text Free text 28 Please specify any other data that you would have liked to have had to design this typ		Which Design Approach did you use for verification of the Ultimate Limit State (ULS)?		 Design Appro Design Appro Design Appro Design Appro Design Appro Other (specification) 	bach 1 Combina bach 1 Combina bach 2 □ Des bach 3 y)	ation 1 only ation 2 only ign Approad	ch 2*				
YG YQ YG YQ YR YQ YR <				1 st combination		2 nd combi	ination (if used)				
25 What width does the foundation need to avoid an ultimate limit state? Provide value in m Provide value in m BuLS = 26 What are the structural forces (at its centreline) that the foundation must be designed for according to Eurocode 2? Provide values in kNm and kN Design bending moment M _{Ed} Design shear force V _{Ed} = 27 What other assumptions did you need to make to complete your design? Free text Free text 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one Uvery conservative do conservative do you consider 30 How conservative do you consider Tick one Uvery conservative do conservative do have hight	2-14		Values	γg	γα	ŶG	γα				
Image: Note of the				γ_{φ}	γc	γ_{ϕ}	γς				
25 What width does the foundation need to avoid an ultimate limit state? Provide value in m B _{ULS} = 26 What are the structural forces (at its centreline) that the foundation must be designed for according to Eurocode 2? Design bending moment M _{Ed} = Design shear force V _{Ed} = 27 What other assumptions did you need to make to complete your design? Free text Free text 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one Uvery conservative □ Conservative □ About right 30 How conservative do you consider Tick one □ Very conservative □ Conservative □ About right				γси	γ̈́Rv	γси	ŶRv				
need to avoid an ultimate limit state? value in m 26 What are the structural forces (at its centreline) that the foundation must be designed for according to Eurocode 2? Provide values in kNm and kN Design bending moment M _{Ed} Design shear force V _{Ed} = 27 What other assumptions did you need to make to complete your design? Free text Free text 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one Uvery conservative I Conservative About right 30 How conservative do you consider Tick one Uvery conservative I Conservative About right				-	γRd	γRh	γRd				
centreline) that the foundation must be designed for according to Eurocode 2? values in kNm and kN = 27 What other assumptions did you need to make to complete your design? Free text 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one Uvery conservative Deservative Deservative About right 30 How conservative do you consider Tick one Uvery conservative Deservative Deservativ	25	need to avoid an ultimate limit state?	value in m								
27 What other assumptions did you need to make to complete your design? Free text 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one □ Very conservative □ Conservative □ About right 30 How conservative do you consider Tick one □ Very conservative □ Conservative □ About right	26	centreline) that the foundation must be designed for according to	values in	о о	i moment M _{Ed}	Design sł	hear force V _{Ed} =				
need to make to complete your design? 28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one Urery conservative I Conservative About right 30 How conservative do you consider Tick one Urery conservative I Conservative About right			CONCLUD	ING QUESTIONS	3						
28 Please specify any other data that you would have liked to have had to design this type of foundation Free text 29 How conservative do you consider your previous national practice to be for this design example? Tick one □ Very conservative □ Conservative □ About right 30 How conservative do you consider Tick one □ Very conservative □ Conservative □ About right	27	need to make to complete your design?	Free text								
29 How conservative do you consider your previous national practice to be for this design example? Tick one □ Very conservative □ Conservative □ About right 30 How conservative do you consider Tick one □ Very conservative □ Conservative □ About right	28	Please specify any other data that you would have liked to have had to	Free text								
30 How conservative do you consider Tick one Very conservative Conservative About right	29	How conservative do you consider your previous national practice to	Tick one				About right				
Eurocode 7 (with your National Unconservative Very unconservative Annex) to be for this example?	30	How conservative do you consider Eurocode 7 (with your National	Tick one				About right				
31 How does your Eurocode 7 design compare with your previous national practice? Tick one Image: Much more conservative image: More conservative image: More conservative image: Much more conservative	31	How does your Eurocode 7 design compare with your previous	Tick one	About the sa	me 🗆 Less con		ervative				
32 Please provide any other relevant Free text information needed to understand	32	Please provide any other relevant	Free text								
L L L L L L L L L L L L L L L L L L L		your previous national practice to be for this design example? How conservative do you consider		Unconservat	ive Very unco	nservative	-				

your solution	to this design exercise	
		AT <u>www.eurocode7.com/etc10/Example 2.2</u> YOUR CONTRIBUTION!

Example 2.3 Pile foundation in stiff clay

A building is to be supported on 450 mm diameter bored piles founded entirely in a stiff clay and spaced at 2m centres. The piles are bored dry, without casing, and concreted on the same day as boring. Each pile carries a characteristic vertical permanent load of 300 kN and a characteristic vertical variable load of 150 kN. This is a small project for which there will be no load testing. Settlement in service is to be limited to 20 mm. The pile's design working life is 50 years. The clay is an over-consolidated marine clay of Miocene age, containing fissures and occasional claystones. Bedding is essentially horizontal.

The undrained shear strength of the clay at different depths can be determined from the results of four different types of tests that were carried out on the site: triaxial tests on samples from 6 percussion bored boreholes SG 11, SG 12, SG 14, SG 15, SG 16 and SG 17, SPTs in the 6 percussion bored boreholes, 1 CPT test and 2 self-boring pressuremeter (SBP) tests, carried out at the locations shown in Figure 2.3a. The results of the undrained triaxial tests are presented in Figure 2.3b. the results of the CPT tests in Figure 2.3c, the logs of boreholes SG14 and RC13 in Figures 2.3d and 2.3e, the results of the SPT blowcounts from the 6 boreholes in Figure 2.3f, and the results of the 2 SBP tests in Figure 2.3g. The designer may select any or all of these data. Appropriate correlations are to be used to determine characteristic values for design. Below 20 m depth, the undrained shear strength is assumed to increase no further.

The water table is at the surface of the clay, and water pressures may be taken to be hydrostatic. The weight density of the clay may be taken as 20kN/m³. At this location the ground surface should be taken to be +17m OD (OD = Ordnance Datum, i.e. reference level), which is also the level of the surface of the stiff clay.

Using Eurocode 7, determine the design length of the pile at the location shown in Figure 2.3a.

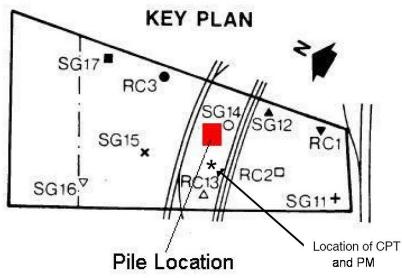


Figure 2.3a: Site plan showing the locations of the boreholes (SG11-17), cone penetration test (CPT), and two profiles of self-boring pressuremeter tests (marked PM on this figure)



Figure 2.3b: Undrained Triaxial Test Results

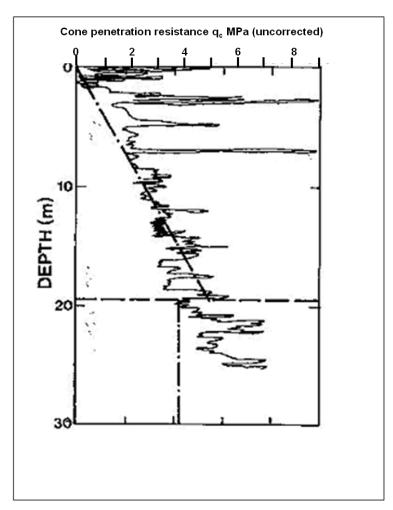


Figure 2.3c: Cone penetration resistance from CPT test

		1.4.1		SAMPLES					
DAILY PROGRESS	DEPTH TO	DEPTHS	DE	РТН		LEG- END	DEPTH	REDUCED	DESCRIPTION OF STRATA
FROUNDS	WATER	CASING	FROM	TO	TYPE		(m)	(m_above 0D	p
						1-	GL	19.45	
10.12.75							0,40		GRANITE SETTS on lean-mix CONCRETE
			1.15	1.45	s	-888			Sundy privelly RUBLE, comprising broken bricks, pied concrete and stones. Clayey towards the bottom.
						\otimes	1.00	<u>18.45</u>	
			1.50	2.00	3D	×			Very soft to soft, brown, saidy silty CLAY with small stones and occasional brick fragments. Also pieces o
		1.70	2.15	2.45	S S	×			china, tile and flint gravel.
			2.00	2.50	30	\otimes			
						\otimes			Cld ripe encountered at 3.6 m (approx 150 mm diametor
			3.15	3.45	is ·	۲¥	3.70	15-75	pipe virtually dry. (FILL - possibly trench for placi
			3.70	4.50	1 3D	,	L		Firm to stiff, brown mottled grey silty CLAY with pat
			4.00	4.50	100 100				of orange-brown SAND/SILT and numerous gypsum crystal
5.0	DRY	4.70	5.15	5.45	5 16	5	-		Less mottled with depth. Small CLAYSTONE at 5.7 m.
11.12.75	DRY	4.70	5.70	6.00	30	-			
							6.00	13.45	(LOTEC:: CLAY)
			6.00	6.50	U 100)			Stiff, grey-brown or grey fiscured silty CLAY with t
			7.15	7.45	S 19	,==			of fine SAND/SILT.
			7.15	7.45	30				
	-		7.000						(LCHDON GLAY)
			3.00	ି ∙ 50	J 100	»==	6.40	11.05	
						==			Stiff to very stiff, grey silty and sandy CLAY, with
			9.15	9.45	S 25	2			patches of fine SAND/SILT. Numerous patches and partings of SILT/SAND below 11.
					H	=			June content increases sufficiently around 12.0 m to
			10.00	10.50	0 100	5			classify as a clayey SAND.
			11.15	11.45	3 29	2			
						=			
			12.00	12.50	11 400			├ 	
			12.00	16.50	U 100				(LOHDON CLAY)
			13.15	13.45	3 27	,	13,00	6-45	
3.50	23Y	4.70							Stiff to very stiff, grey silty CLAY with occasional
2.12.75	13.30	4.70	.1. 1.1						concentrations of SILF. Laminar structure visible. Occasional small gyritised modules.
	-		14.00	14.50	0 100				Slight seepage of water from 14.0 m.
			15.15	15.45	S 39				
				100	1				
						-			Small pieces of CLAYSTONE recovered from 15.3 m to 1
			15.00	15.50	0 100				Slight seepage of water.
			17.15	17.45	5 -51		17.00	2.45	
	-		17.15	17:49			1		Stiff to very stiff, silty and sandy CLAY, with pate
									and pockets of SILT/fine SAND.
			18.00	10.50	U:100				
						_	1		Humercus shell fragments around 18.6 c.
			19.15	19.45	8 45	2==	l		Seconding very sandy around 19.0 n.
					$\parallel \mid$		20,00	-0.55	(LCHDON CLAY)
							20.00	1	
REMARKS	;						-		TYPE OF BORING
		turbed	annle (Jarl +	iter fr	ion th	e cutti	ng shoe	of all U100 Shell-and-suga
		from S.						5	1 ton Isler
									DIAMETER OF BORIN
									240 mm - to 20
									and the stand of t
									CASING TUBES
									250 mm = to 4
									BOREHOL

Figure 2.3d(1): Log for percussion bored Borehole No. SG 14 – Sheet 1

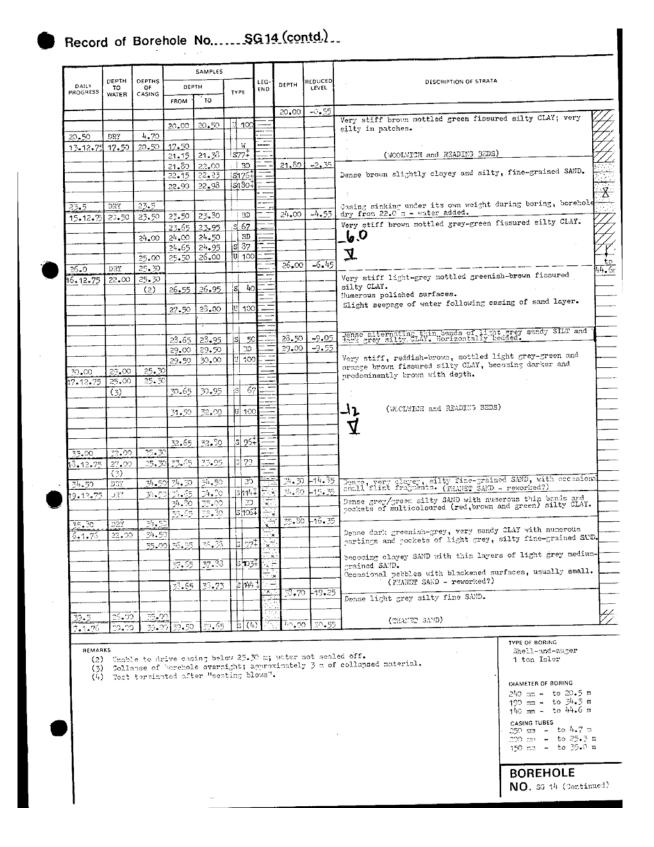


Figure 2.3d(2): Log for percussion bored Borehole No. SG 14 with SPT results - Sheet 2

				SAMPLES					
DAILY PROGRESS	DEPTH TO WATER	DEPTHS OF CASING	DE FROM	ртн то	TYPE	LEG- END	DEPTH	REDUCED LEVEL	DESCRIPTION OF STRATA
						\vdash	40.00	-20.55	
		35.00			30				Dense light grey, silty, fine-grained SAD. Occasion:
			40.00	40,50	30				rounded flints and an increase in angular flint fragme bowards base of stratum.
				40.73	S (4)				(THANET SAND)
									-
42.50	36.00	35.00					-		
S.1.75	52.00	35.00		43.53	S 120				
43.30	38,00		43.80	43.88	S (4))	43.80		Hard, white CHALK.
9.1.76 44.60	30.00	35.00	44.50	44.53	S (4)	, <u> </u>	44.60	-25.15	
11.00	<u> </u>								End of borehole
			-						
			<u> </u>		\mathbb{H}	+	 -		
			t						
				[_		
	-	l			┢┼┼──				
			1	<u> </u>	++	+	t	t	
				L		1			
	1			1					
	-			+					
					Ш.				
					-				
_					+++				
							I		
			1						
_							-		
					11	+	1	1	4
				<u> </u>		-			
					++-	-	1-		4
		+	1	+	+++	+			1
		-				_], · · · · · ·
			1			+		+	4
	-	-			1++		+	+	1
									1
						_			4
	1	1			Li				
REMARK	s								TYPE OF BORING
(ω)	Torre 1	erminat	ed afte A sease apsed e	er "seat proment overnigh	ing bl - bore it to 3	ows". hole 8.5 m	grouted	on com and 35	Shell-and-aug 1 ton Isler Om on 7, 3 and 9 Jan respectively.
									DIAMETER OF 801111 24-0 mm - to 190 mm - to 14-0 mm - to
									casing TUBES 250 cm - to 200 cm - to 150 cm - to
									BOREHOL

Figure 2.3d(3): Log for Borehole No. SG 14 with SPT results – Sheet 3

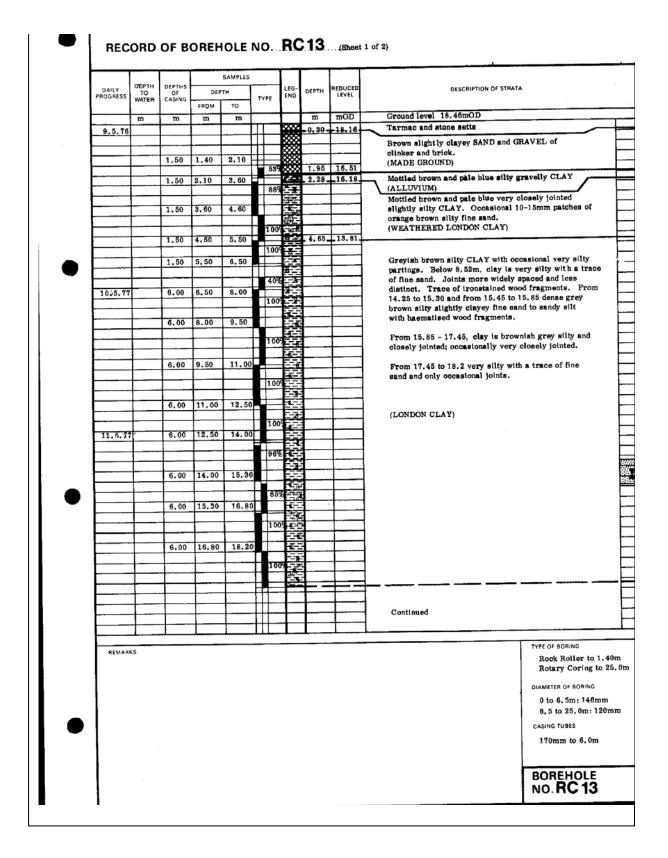


Figure 2.3e(1): Log for rotary cored Borehole No. RC 13 - Sheet 1

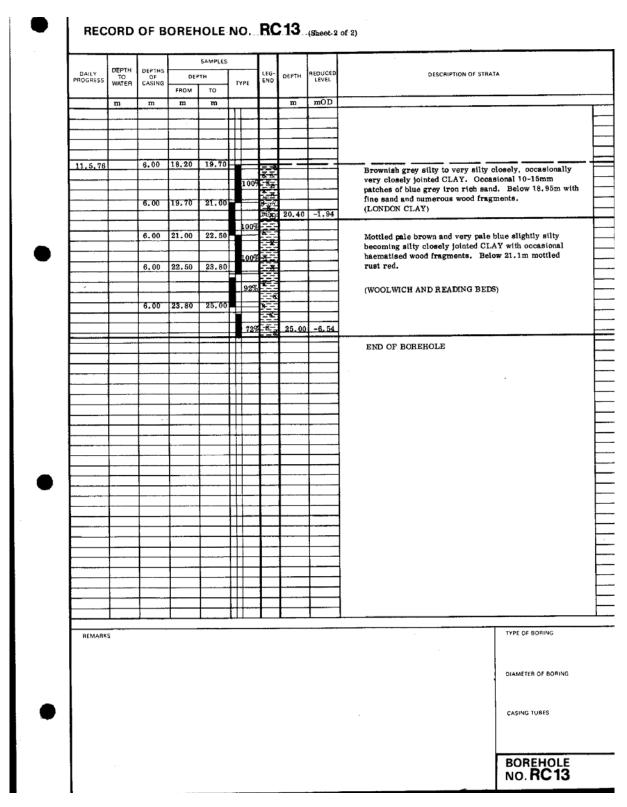


Figure 5.3e(2): Log for rotary cored Borehole No. RC 13 - Sheet 2

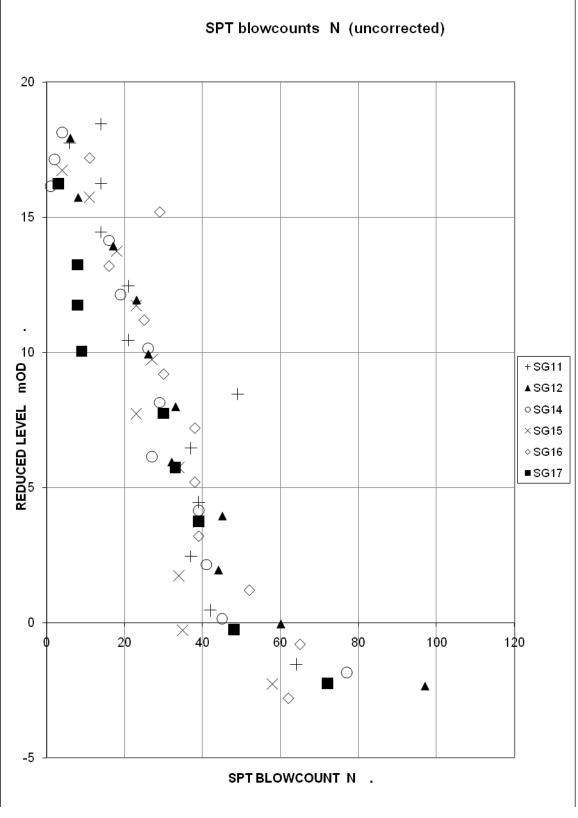
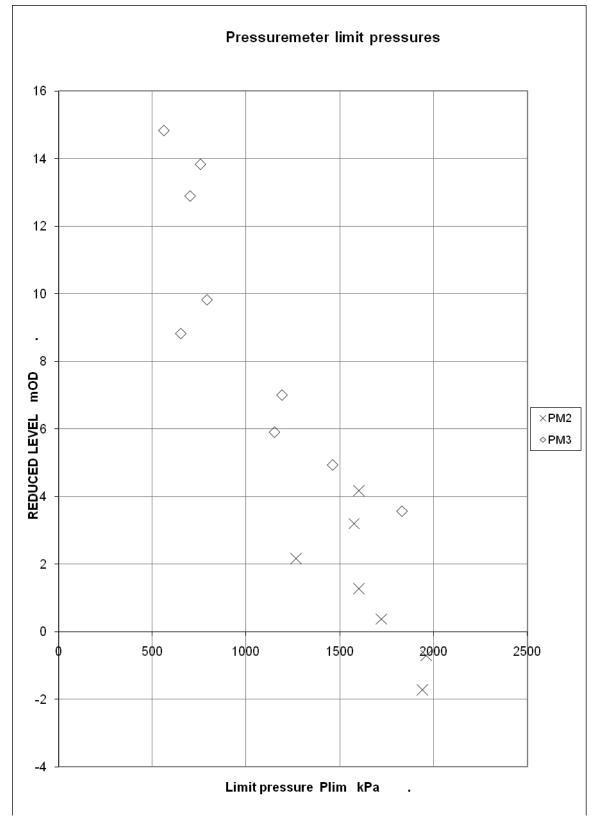
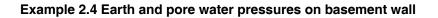
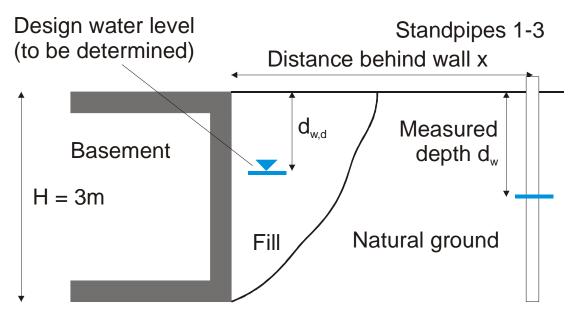


Figure 2.3f: Combined SPT blowcounts from Boreholes SG 11, SG 12. SG 14, SG 15 SG 16 and SG 17




Figure 2.3g: Results of self-boring pressuremeter tests in two boreholes PM2 and PM3


Example 2.3 Pile foundation in stiff clay Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Que	stion	Instruction	Answer				
			NERAL				
1	Please provide your contact details in case we need to clarify your submission*	*Will be kept strictly confidential	Name Affiliation Email address				
2	How many structures of this kind have you previously designed?	Tick one	□ None □ 1-2 □ 3-6 □ More than 6				
3	Having completed your design to Eurocode 7, how confident are you that the design is sound?	Tick one	□ Very unsure □ Unsure □ Confident □ Very confident				
4	How did you account for the location of boreholes/cone tests relative to the foundation?	Tick one	 Did not consider borehole/test location Considered nearest borehole/test only Considered 'average' of all boreholes/tests Considered trend of all b'holes/tests, biased towards nearest Other (specify) 				
5	Please explain the reasons for your answer to Q4	Free text					
		SERVICEAB	LITY LIMIT STATE				
6	Which parameters did you use for the SLS design of the pile foundation?	Tick all that apply	□ Cone resistance of □ SPT blow count N □ UU triaxial test str □ Pressuremeter lim □ Undrained Young □ Drained Young's of □ Shear modulus of □ Other (specify)	I □ Corrected SPT to rength cu nit pressure p _{lim} 's modulus of elastici modulus of elasticity f elasticity G	blow count (N ₁) ₆₀		
7	What correlations did you use to derive soil parameter values (if used) for the SLS verification? If more than one, please list others below	Free text	Description: Author: Title: Pages:				
7a	Any other correlations? (please give same info as above)						
8	What assumptions did you make in choosing these correlations?	Free text					
9	How did you account for any variation in parameters with depth?	Tick one	□ Ignored variation with depth □ Assumed linear variation □ Assumed bi-linear variation □ Assumed stepped variation □ Other (specify)				
10	Please explain the reasons for your answer to Q9	Free text					
11	What is the characteristic value of N at these levels?	Provide uncorrected values	At +17 m, N =	At +7 m, N =	At –3 m, N =		
12	What is the characteristic value of q_c at these levels?	Provide values in units of MPa	At +17 m, q _c =	At +7 m, q _c =	At –3 m, q _c =		
13	What is the characteristic value of p _{lim} at these levels?	Provide values in units of MPa	At +17 m, p _{lim} =	At +7 m, p _{lim} =	At –3 m, p _{lim} =		
14	What is the characteristic value of triaxial c_u at these levels?	Provide values in units of kPa	At +17 m, c _u =	At +7 m, c _u =	At –3 m, c _u =		
15	How did you assess these values?	Tick all that apply	 □ By eye □ By linear regression □ By statistical analysis □ From an existing standard (specify) □ From a published correlation (specify) □ Comparison with a previous design □ From the soil description, not using the data □ Other (specify) 				
16	Which calculation model did you use to determine settlement?	Tick one	 □ Method from national annex (specify) □ Method from national standard (specify) □ Finite element analysis □ Finite difference analysis □ Other (specify) 				
17	What length does the pile need to	Provide	L _{SLS} =				

	avoid a serviceability limit state?	value in m						
			E LIMIT STATE					
18	Which parameters did you use for the ULS design of the pile foundation?	Tick all that apply	$\label{eq:spectral_constraint} \begin{array}{ c c c } \hline & Cone \ resistance \ q_c \ \Box \ Sleeve \ friction \ f_s \\ \hline & \Box \ SPT \ blow \ count \ N \ \Box \ Corrected \ SPT \ blow \ count \ (N_1)_{60} \\ \hline & \Box \ UU \ triaxial \ test \ strength \ c_u \\ \hline & \Box \ Pressuremeter \ limit \ pressure \ p_{lim} \\ \hline & \Box \ Other \ (specify) \ \dots \end{array}$					
19	What correlations did you use to derive soil parameter values (if used) for the ULS verification? If more than one, please list others below	Free text	Description: Author: Title:					
			Pages:					
19a	Any other correlations? (please give same info as above)							
20	What assumptions did you make in choosing these correlations?	Free text						
21	(If determined) What is the characteristic value of unit shaft resistance qs at these levels?	Provide values in units of kPa	At +17 m, $q_s =$ At +7 m, $q_s =$ At -3 m, $q_s =$				At –3 m, q _s =	
22	(If determined) What is the characteristic value of unit base resistance q_b at these levels?	Provide values in units of kPa	At +17 m, $q_b =$ At +7 m, $q_b =$ At -3 m, $q_b =$				At –3 m, q _b =	
23	Which calculation model did you use to determine the pile's compressive resistance?	Tick one	 □ Annex D.6 from EN 1997-2 □ Annex D.7 from EN 1997-2 □ Annex E.3 from EN 1997-2 □ Alternative given in a national annex (specify) □ Alternative given in a national standard (specify) □ Finite element analysis □ Finite difference analysis □ Other (specify) 					
24	Which country's National Annex did you use to interpret EN 1997-1?	Free text						
25	Which Design Approach did you use for verification of the Ultimate Limit State (ULS)?	Tick one	 Design Approach 1 Combinations 1 and 2 Design Approach 1 Combination 1 only Design Approach 1 Combination 2 only Design Approach 2 Design Approach 3 Other (specify) 					
26 26a	What values of partial factors did you use for this ULS verification?	Provide values	1 st combination 2 nd combination (if used)					
			γ_{G} γ_{ϕ}	γα γς		γg γ _φ	γα γς	
			γ _φ	γs		γ _φ	γc γs	
			γ _b	γt		γь	γt	
27	What correlation factors (if any) did you use for this verification?	Provide values	ξ3			ξ4		
28	What model factor (if any) did you use for this verification?	Provide values	γ _{Rd}					
29	What length does the pile need to avoid an ultimate limit state?	Provide value in m	L _{ULS} =					
30	What is the design compressive force that the pile must be designed for according to Eurocode 2?	Provide values in kN	Design compressive force F _{cd} =					
		CONCLUD	ING QUESTIONS	3				
31	What other assumptions did you need to make to complete your design?	Free text						
32	Please specify any other data that you would have liked to have had to design this type of foundation	Free text						
33	How conservative do you consider your previous national practice to be for this design example?	Tick one	□ Very conservative □ Conservative □ About right □ Unconservative □ Very unconservative					
34	How conservative do you consider Eurocode 7 (with your National Annex) to be for this example?	Tick one	□ Very conservative □ Conservative □ About right □ Unconservative □ Very unconservative					

35	How does your Eurocode 7 design compare with your previous national practice?	Tick one	 Much more conservative More conservative About the same Less conservative Much less conservative 				
36	Please provide any other relevant information needed to understand	Free text					
	your solution to this design exercise						
	PLEASE SUBMIT YOUR ANSWERS AT <u>www.eurocode7.com/etc10/Example 2.3</u> THANK YOU FOR YOUR CONTRIBUTION!						

This example is designed to compare engineers' assumptions about water pressures acting on the face of a basement wall. The wall will NOT be provided with a drainage system. Ground surface behind the wall is horizontal will be paved in the long term.

The natural water level has been measured in local standpipes as follows:

Standpipe 1, distance x = 10m behind the wall, depth to water $d_w = 2.2 m$ Standpipe 2, distance x = 25m behind the wall, depth to water $d_w = 1.5 m$ Standpipe 3, distance x = 50m behind the wall, depth to water $d_w = 3.1 m$

Three situations are envisaged (with different materials involved):

Situation A: natural ground = clay, fill = clay fill (from excavated natural ground) Natural clay: $\gamma_k = 22 \text{ kN/m}^3$, $c_{u,k} = 35 \text{ kPa}$, $\phi'_k = 25^\circ$, $c'_k = 0 \text{ kPa}$

- Situation B: natural ground = clay, fill = imported granular fill Natural clay: as above Imported granular fill: $\gamma_k = 18 \text{ kN/m}^3$, $\phi'_k = 35^\circ$, $c'_k = 0 \text{ kPa}$
- Situation C: natural ground = gravel, fill = imported granular fill Natural gravel: $\gamma_k = 19 \text{ kN/m}^3$, $\phi'_k = 40^\circ$, $c'_k = 0 \text{ kPa}$ Imported granular fill: as above

For each situation A-C above, please determine:

1) The characteristic depth of the water table $d_{w,k}$ 2) The characteristic thrust on the wall (over height H) owing to water pressures alone

3) The characteristic thrust on the wall (over height H) owing to effective earth pressures alone

Repeat 1-3 above using design values for the serviceability limit state (SLS) Finally, repeat 1-3 above using design values for the ultimate limit state (ULS)

Example 2.4 Earth and pore water pressures on basement wall Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Ques	tion	Instruction	Answer		
			NERAL		
1	Please provide your contact details	*Will be kept	Name		
	in case we need to clarify your submission*	strictly confidential	Affiliation Email address		
2	How many structures of this kind	Tick one		-6	
-	have you previously designed?				
3	Having completed your assessment	Tick one	□ Very unsure □ U	nsure 🛛 Confident 🗆	Very confident
	of pressures to Eurocode 7, how				
	confident are you that the assessment is sound?				
4	How did you account for the	Tick one	Did not consider s	tandpipe location	
	location of standpipes relative to		Considered neare		
	the wall?		Considered 'avera		
				of all standpipe, biased	d towards nearest
5	Please explain the reasons for your	Free text	□ Other (specify)		
Ŭ	answer to Q4	1100 10			
			ARACTERISTIC VAL		
6	What is the characteristic depth of	Provide	Situation A, $d_w =$	Situation B, d _w =	Situation C, $d_w =$
	the water table d _w for the three situations?	values in units of m			
7	How did you choose the	Tick one	□ Took average of n	neasured water levels	
	characteristic water level?		Took highest mea	sured water level	
			□ Took water level a		
			□ Other (specify)		
		SERVICEAR	LITY LIMIT STATE		
8	What is the design depth of the	Provide	Situation A, $d_w =$	Situation B, d _w =	Situation C, $d_w =$
	water table $d_{w,d(SLS)}$ in the SLS for	values in	, - w	, - w	, - •
	the three situations?	units of m			
9	How did you choose the design	Tick one		neasured water levels	
	water level for the SLS?		Took highest mea Took characteristic		
				than characteristic wat	er level
			Took water level a	t ground surface	
10		F	□ Other (specify)		
10	Please explain the reasons for your answer to Q9	Free text			
11	What is the design thrust on the	Provide	Situation A, $P_w =$	Situation B, $P_w =$	Situation C, $P_w =$
	wall due to water pressure P_w in the	values in			
10	SLS?	kN/m run			
12	What is the design thrust due to	Provide	Situation A, $P'_a =$	Situation B, $P'_a =$	Situation C, $P'_a =$
	effective earth pressure P'a in the SLS?	values in units of			
		kN/m run			
13	How did you determine effective	Tick one	Took active press		
	earth pressures on the wall for		□ Took at-rest press		$V_{\rm M}$
	SLS?			ctive and at-rest press imate compaction pres	
			□ Other (specify)		
14	Please explain the reasons for your	Free text			
	answer to the previous question				
	(plus any assumptions made)		E LIMIT STATE		
15	What is the design depth of the	Provide	Situation A, $d_w =$	Situation B, d _w =	Situation C, d _w =
	water table $d_{w,d(ULS)}$ in the ULS for	values in	. ,	. ,	· - /
	the three situations?	units of m			
16	How did you choose the design	Tick one		neasured water levels	
	water level for the ULS?		Took highest mea Took characteristic		
				than characteristic wat	er level
			Took water level a		
			□ Other (specify)		
17	Please explain the reasons for your	Free text			

	answer to Q16					
18	Which country's National Annex did	Free text				
	you use to interpret EN 1997-1?					
19	Which Design Approach did you use for verification of the Ultimate Limit State (ULS)?	Tick one	 Design Approach 1 Combinations 1 and 2 Design Approach 1 Combination 1 only Design Approach 1 Combination 2 only Design Approach 2 Design Approach 2* Design Approach 3 Other (specify) 			ch 2*
20	What values of partial factors did	Provide	1 st combination		2 nd comb	ination (if used)
20a	you use for this ULS verification?	values	γς γο		γg	γο
			γ_{φ}	γς	γ_{ϕ}	γc
			γ̈́Rv	γRd	ŶRv	γRd
21	What partial factor did you apply to the action arising from characteristic water pressures?	Tick one	$\Box \gamma_{G} = 1.35 \text{ to}$ $\Box \text{ Same } \gamma \text{ as a}$ $\Box Other (speci$		$\gamma_Q = 1.5$ to re earth pre	ssure
22	What is the design thrust on the wall due to water pressure P_w in the ULS?	Provide values in kN/m run	Situation A, P _w			Situation C, P _w =
23	What is the design thrust due to effective earth pressure P'a in the ULS?	Provide values in units of kN/m run	Situation A, P'a		B, P' _a =	Situation C, P'a =
24	How did you determine effective earth pressures on the wall for ULS?	Tick one	 Took active pressures (K_a) Took at-rest pressures (K₀) Took average of active and at-rest pressures (K_a + K₀)/2 Calculated approximate compaction pressures Other (specify) 			
25	Please explain the reasons for your answer to the previous question (plus any assumptions made)	Free text				
	(plue any accumptions made)	CONCLUD	ING QUESTION	S		
26	What other assumptions did you need to make to determine design earth and water pressures?	Free text				
27	Please specify any other data that you would have liked to determine design earth and water pressures	Free text				
28	How conservative do you consider your previous national practice to be for this design example?	Tick one	□ Very conservative □ Conservative □ About right □ Unconservative □ Very unconservative			
29	How conservative do you consider Eurocode 7 (with your National Annex) to be for this example?	Tick one	□ Very conservative □ Conservative □ About right □ Unconservative □ Very unconservative			
30	How does your Eurocode 7 'design' compare with your previous national practice?	Tick one		conservative D me D Less cons onservative		ervative
31	Please provide any other relevant information needed to understand your solution to this design exercise	Free text				
	PLEASE SUBMIT YOU				Example 2.	4
	THA	ANK YOU FOR	YOUR CONTRIE	BUTION!		

Example 2.5: Embankment on soft peat

An embankment is to be designed which shall enclose an area that will later be hydraulically filled with dredged material. The final height of the embankment will be 3 m, the inclination of the embankment slopes is to be 1:2, and the crest is to have a width of 1 m with no loading. The weight density of the sand fill to form the embankment is 19 kN/m³ and its characteristic angle of shearing resistance is $\phi'_{k} = 32.5^{\circ}$.

The ground surface is effectively horizontal at a level of approximately NN -1.0 m. The ground consists of a few dm of topsoil and normally consolidated clay (weight density of $\gamma = 18$ kN/m³ and effective weight density of $\gamma = 9$ kN/m³) on a 3 to 7 m thick pseudo-fibrous to amorphous holocene peat layer with an effective weight density of $\gamma' = 2$ kN/m³ overlaying pleistocene sand of medium density having an effective weight density of 11 kN/m³ and a characteristic angle of shearing resistance of $\phi'_{k} = 35^{\circ}$. The peat may be assumed to act in an undrained manner during the construction of the embankment. Figures 2.5a to 2.5e show the results of two borings and five vane tests, which have been performed and evaluated according to DIN 4094:2002 "Subsoil – Field testing – Part 4: Field vane tests". The vane had a width D = 75 mm and height H = 150 mm. The vane tests have a spacing of 40 to 50 m and are situated at the centreline of the embankment. Table 2.5a provides an explanation for the symbols and terms used on the borehole logs.

The objective of this design example is to predict how high the embankment can be constructed in a first phase, without any reinforcement between the embankment and the ground. The topsoil is not to be removed before constructing the embankment. Furthermore it should be assumed that the area within the embankment has not been filled with dredged material. No serviceability requirements have to be fulfilled. No accidental design situations to be checked. This is a persistent design situation, where no variable actions (due to construction machinery) have to be taken into account.

Details of the ground investigation are given below.

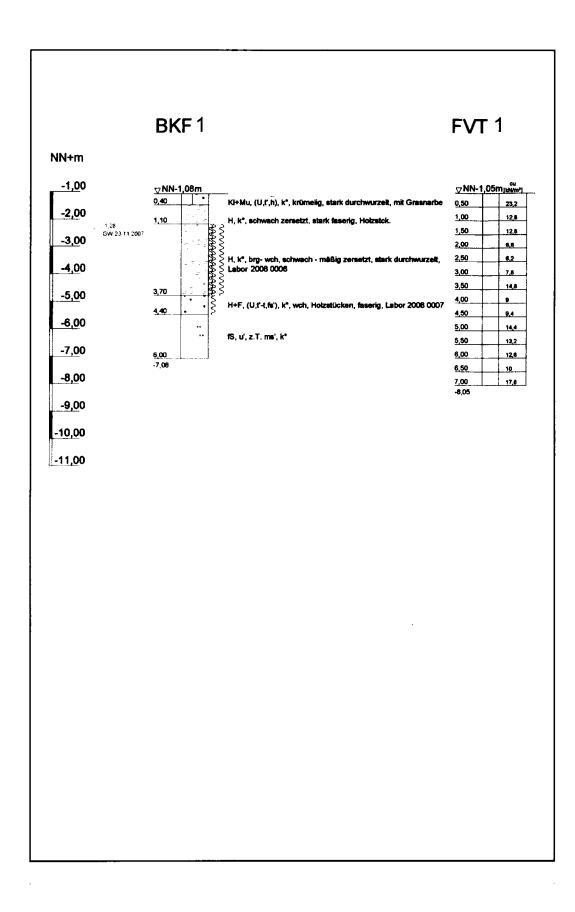


Figure 2.5a: Borehole log and vane test 1

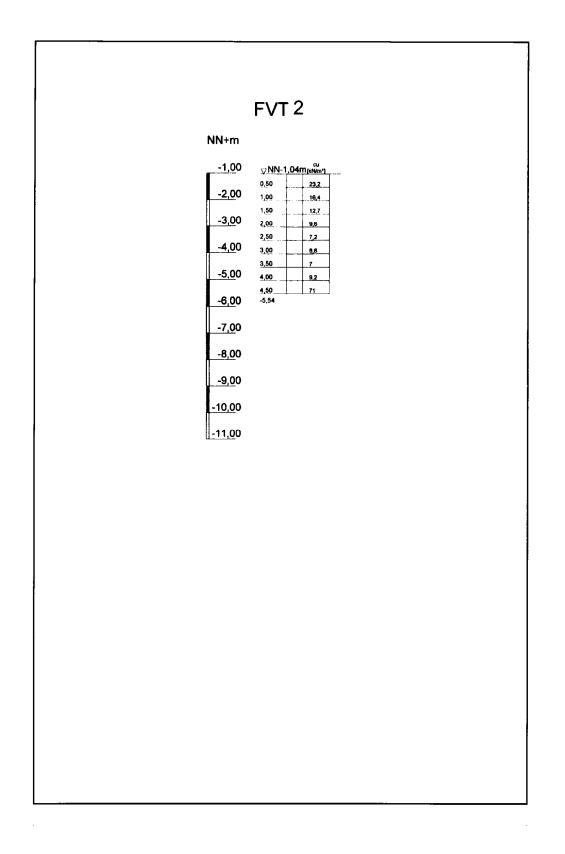


Figure 2.5b: Vane test 2

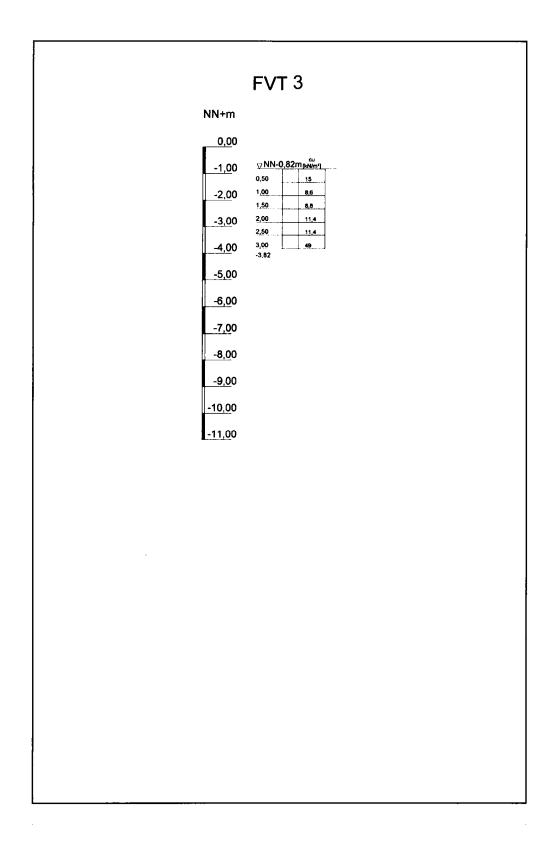


Figure 2.5c: Vane test 3

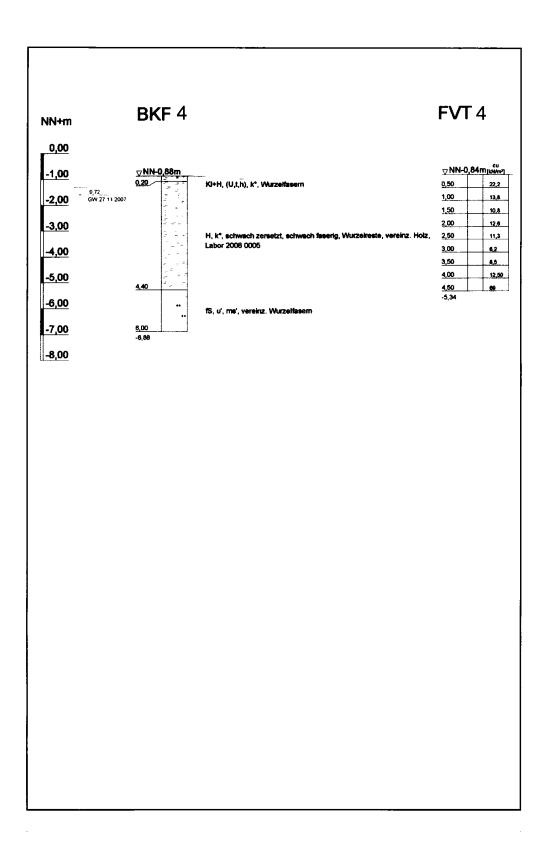


Figure 2.5d: Borehole log and vane test 4

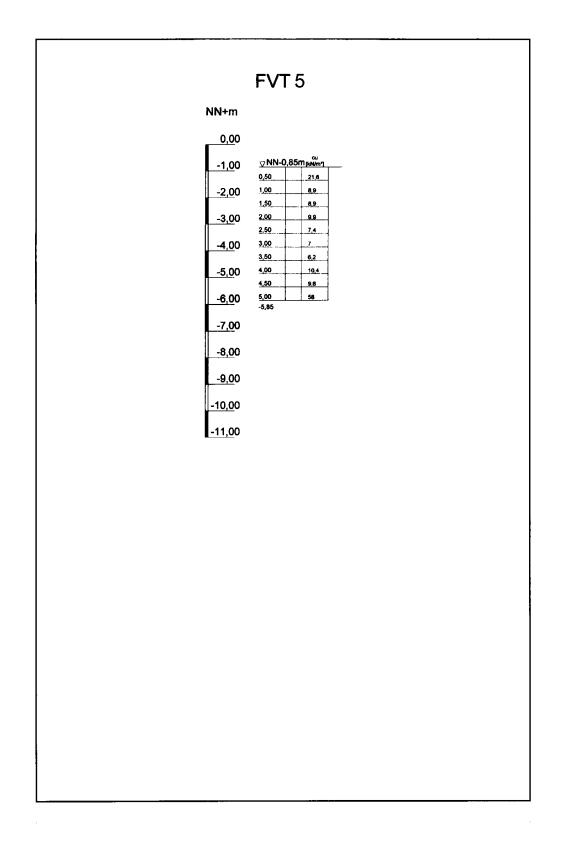


Figure 2.5e: Vane test 5

Symbol/Term	Description
BKF	Boring, where cores are taken in a liner
F	Sapropel
fS, fs	fine sand, with fine sand
H, h	peat, peaty
Holzstücke	pieces of wood
k°	containing carbonate
KI	clay
mäßig zersetzt	amorphous peat
mS, ms, ms´	medium sand, with medium sand, with little medium sand
Mu	topsoil
NN	sea level
S, s	sand, sandy
schwach zersetzt	pseudo-fibrous peat
stark faserig	fibrous peat
T, t	clay (fraction), clayey,
U, u, u´	silt, silty, with little silt
Wurzelfasern	root fibres
Z	Depth

Table 2.5a: Symbols and terms used on the Borehole logs

Table 2.5b: Undrained shear strength measured by field vane tests

Depth below	Undrained shear strength measured by field vane tests in kN/m ²					
ground level m	FVT 1	FVT 2	FVT 3	FVT 4	FVT 5	
0.5	23,20	23,20	15,00	22,20	21,60	
1.0	12,80	16,40	8,60	13,80	8,90	
1.5	12,80	12,70	8,80	10,80	8,90	
2.0	6,60	9,60	11,40	12,60	9,90	
2.5	6,20	7,20	11,40	11,30	7,40	
3.0	7,80	8,80		6,20	7,00	
3.5	14,80	7,00		8,50	6,20	
4,0	9,00	9,20		12,50	10,40	
4.5	9,40				9,80	
5.0	14,40					
5.5	13,20					
6.0	12,60					
6.5	10,00					
7.0	17,80					

Example 2.5: Embankment on soft peat Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Que	stion	Instruction	Answer		
			NERAL		
1	Please provide your contact details	*Will be kept	Name		
	in case we need to clarify your	strictly	Affiliation		
	submission*	confidential	Email address		
2	How many structures of this kind have you previously designed?	Tick one	□ None □ 1-2 □ 3	6 □ More than 6	
3	Having completed your design to	Tick one	□ Very unsure □ U	nsure 🗆 Confident E	Very confident
	Eurocode 7, how confident are you that the design is sound?				
		ULTIMAT	E LIMIT STATE		
4	Which calculation model did you	Tick all that	Annex D from EN	1997-1	
	use to determine the maximum	apply	Alternative given i	n a national annex (sp	pecify)
	height of the embankment?			n a national standard	
				rhof D Brinch-Hanse	
				n (slip circle/method o	
				n (wedge mechanism	
				alysis D Finite differe	
			□ Other (specify)	.,	
5	If you used a slip circle method,	Tick one	Bishop with horizo	ntal interslice forces	
-	which variant of this method did you			ly inclined interslice f	orces
	use?			ith constantly inclined	
			□ Janbu with horizo		
				y inclined interslice for	irces
				ntly inclined interslice	
			Swedish circle me		101003
			□ Morgenstern and	TICE	
6	Which noremotors did you use for	Tick all that	□ Other (specify)	ronath a	
6	Which parameters did you use for		□ Measured vane st		
	the ULS design of the	apply	Corrected vane st	rength c _u	
-	embankment?	-	□ Other (specify)		
7	What correlations did you use to	Free text	Description:		
	derive soil parameter values (if		•		
	used) for the ULS verification? If		Author:		
	more than one, please list others				
	below		Title:		
			Pages:		
7a	Any other correlations? (please give	Free text	i ayes.		
74	same info as above)	1100 10/1			
8	What assumptions did you make in	Free text			
-	choosing these correlations?				
9	How did you account for the	Tick one		orehole/profile location	
	location of boreholes/vane profiles			st borehole/profile on	
	relative to the embankment?			ge' of all boreholes/p	
			□ Considered trend	of all boreholes/profile	es, biased towards
			nearest		
		_	□ Other (specify)		
10	Please explain the reasons for your answer to Q9	Free text			
11	How did you account for any	Tick one	□ Ignored variation v	vith depth 🗖 Assum	ned linear variation
• •	variation in parameters with depth?		□ Assumed bi-linear		ned stepped variation
			□ Other (specify)		icu sieppeu valialiuli
12	Please explain the reasons for your	Free text			
12	answer to Q11				
13	What is the characteristic value of	Provide	At 1 m, c _u =	At 2 m, c _u =	At 3 m, c _u =
10	c_u at these depths?	values in	A. T. III, Ou –	$\pi 2 m, \sigma -$	At 0 m, 0u -
		units of kPa	At 4 m, c _u =	At 5 m, c _u =	At 6 m, c _u =
14	How did you assess these values?	Tick all that		ear regression DBy	statistical analysis
		apply	□ From an existing s		statistical analysis
		appiy		correlation (specify)	
			Comparison with a		
				ription, not using the	data
	1			inpuon, not using the	uala
			□ Other (specify)		

15	Which country's National Annex did you use to interpret EN 1997-1?	Free text						
16	Which Design Approach did you use for verification of the Ultimate Limit State (ULS)?	Tick one	 Design Approach 1 Combinations 1 and 2 Design Approach 1 Combination 1 only Design Approach 1 Combination 2 only Design Approach 2 Design Approach 2* Design Approach 3 Other (specify) 					
17	What values of partial factors did	Provide	1 st combinatio	ination 2 nd combination (if used)				
17a	you use for this ULS verification?	values	γg	γα	γG	γο		
			γ_{ϕ}	γc	γ_{ϕ}	γς		
			γcu	γ̈́Rv	γcu	γ̈́Rv		
			γ̂Rh	γRd	γ̂Rh	γRd		
18	What is the embankment's maximum height to avoid an ultimate limit state?	Provide value in m	H =					
		CONCLUD	ING QUESTION	IS				
19	What other assumptions did you need to make to complete your design?	Free text						
20	Please specify any other data that you would have liked to have had to design this type of foundation	Free text						
21	How conservative do you consider your previous national practice to be for this design example?	Tick one		ervative □ Cons ative □ Very und	ervative D Abou conservative	t right		
22	How conservative do you consider Eurocode 7 (with your National Annex) to be for this example?	Tick one		ative 🗆 Very und		Ū		
23	How does your Eurocode 7 design compare with your previous national practice?	Tick one	 Much more conservative More conservative About the same Less conservative Much less conservative 					
24	Please provide any other relevant information needed to understand your solution to this design exercise	Free text						
	PLEASE SUBMIT YOU				/Example 2.5			
	THANK YOU FOR YOUR CONTRIBUTION!							

Example 2.6 Pile foundation in sand

A building is to be supported on 450 mm diameter bored piles founded entirely in a medium dense to dense sand spaced at 2m centres. The piles are bored with temporary casing, filled with water, and concreted on the same day as boring. Each pile carries a characteristic vertical permanent load of 300 kN and a characteristic vertical variable load of 150 kN. This is a small project for which there will be no load testing. It is believed that settlement in service will not govern the design.

The sand is a Pleistocene fine and medium sand. Bedding is essentially horizontal. The sand is covered by Holocene layers of loose sand, soft clay, and peat (see Figure 2.6b). One CPT was carried out at a distance of 5 m from the boring to determine the strength profile of the ground (see Figure 2.6b). The CPT has been performed and evaluated according to DIN 4094:2002 "Subsoil – Field testing – Part 1: Cone penetration tests" using a tip of 10 cm² without measurement of sleeve friction and pore water pressure. The ground level is at about NN +2.5 m (where NN = reference level) and essentially horizontal. No fill will be placed on the ground. The water table is about 1.4 m below ground level.

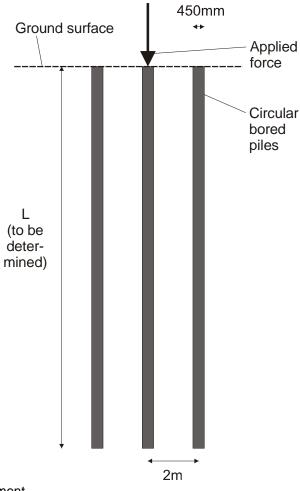


Figure 2.6a: Pile arrangement

Using Eurocode 7, determine the design length of the piles shown in the Figure 2.6a.

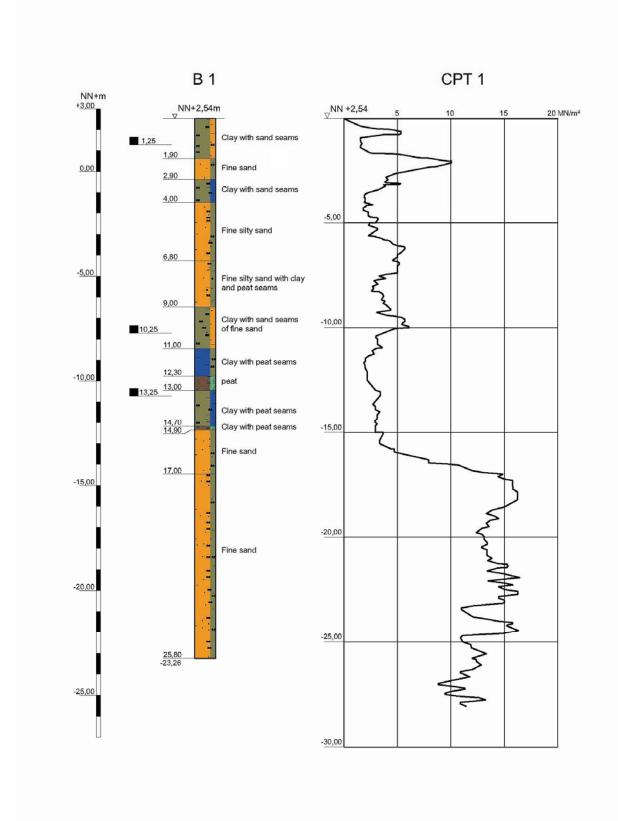


Figure 2.6b: Cone penetration resistance from CPT test

Example 2.6 Pile foundation in sand Note: this is a persistent design situation; for simplicity, accidental design situations do NOT need to be checked.

Ques	tion	Instruction	Answer			
		-	NERAL			
1	Please provide your contact details in case we need to clarify your submission*	*Will be kept strictly confidential	Name Affiliation Email address			
2	How many structures of this kind have you previously designed?	Tick one	□ None □ 1-2 □ 3-6 □ More than 6			
3	Having completed your design to Eurocode 7, how confident are you that the design is sound?	Tick one	□ Very unsure □ Unsure □ Confident □ Very confident			
		ULTIMAT	E LIMIT STATE			
4	What correlations did you use to derive soil parameter values (if used) for the ULS verification? If more than one, please list others below	Free text	Description: Author: Title:			
			Pages:			
4a	Any other correlations? (please give same info as above)					
5	What assumptions did you make in choosing these correlations?	Free text				
6	How did you account for any variation in parameters with depth?	Tick one	□ Ignored varia □ Assumed bi-I □ Other (specif	linear variation		ed linear variation ned stepped variation
7	Please explain the reasons for your answer to Q6	Free text				
8	What is the characteristic value of q_c at these depths?	Provide values in	At 7.5 m, q _c =	At 12.5	· •	At 12.5 m, q _c =
		units of MPa	At 17.5 m, q _c =	At 22.5	m, q _c =	
9	How did you assess these values?	Tick all that apply	 By eye By linear regression By statistical analysis From an existing standard (specify) From a published correlation (specify) Comparison with a previous design From the soil description, not using the data Other (specify) 			
10	(If determined) What is the characteristic value of unit shaft resistance q _s at these depths?	Provide values in units of kPa	At 2.5 m, q _s =	At 7.5 m	-	At 12.5 m, q _s =
	resistance q_s at these depths?	units of KPa	At 17.5 m, q _s =	At 22.5	m, q _s =	
11	(If determined) What is the characteristic value of unit base resistance q _b at these depths?	Provide values in units of kPa	At 2.5 m, q _b = At 17.5 m, q _b =	At 7.5 m		At 12.5 m, q _b =
12	Which calculation model did you use to determine the pile's compressive resistance?	Tick one	At 17.5 m, q _b = At 22.5 m, q _b = □ Annex D.6 from EN 1997-2 □ Annex D.7 from EN 1997-2 □ Alternative given in a national annex (specify) □ Alternative given in a national standard (specify) □ Finite element analysis □ Finite difference analysis □ Other (specify)			becify) … (specify) …
13	Which country's National Annex did you use to interpret EN 1997-1?	Free text				
14	Which Design Approach did you use for verification of the Ultimate Limit State (ULS)?	Tick one	 Design Approach 1 Combinations 1 and 2 Design Approach 1 Combination 1 only Design Approach 1 Combination 2 only Design Approach 2 Design Approach 2* Design Approach 3 Other (specify) 			
15 15a	What values of partial factors did you use for this ULS verification?	Provide values	1 st combination	<u>.</u> .	2 nd comb	ination (if used)
.00		14.400	γG	γο	γg	γα
			γ_{ϕ}	γc	γ_{ϕ}	γc
			γcu	γs	γcu	γs
			γb	γt	γb	γt

16	What correlation factors (if any) did	Provide	ξ3	٤4		
	you use for this verification?	values	20			
17	What model factor (if any) did you	Provide	γBd			
	use for this verification?	values				
18	What length does the pile need to	Provide	L _{ULS} =			
	avoid an ultimate limit state?	value in m				
19	What is the design compressive	Provide	Design compressive force $F_{cd} =$			
	force that the pile must be designed	values in kN				
	for according to Eurocode 2?					
		SERVICEABI	LITY LIMIT STATE			
20	(If determined) What is the	Provide value	s _{SLS} =			
	settlement of the pile in the	in mm				
	serviceability limit state?					
		CONCLUDI	NG QUESTIONS			
21	What other assumptions did you	Free text				
	need to make to complete your					
	design?					
22	Please specify any other data that	Free text				
	you would have liked to have had to					
	design this type of foundation					
23	How conservative do you consider	Tick one	□ Very conservative □ Conser			
	your previous national practice to		□ Unconservative □ Very unco	nservative		
	be for this design example?					
24	How conservative do you consider	Tick one	□ Very conservative □ Conser	-		
	Eurocode 7 (with your National		□ Unconservative □ Very unco	nservative		
25	Annex) to be for this example? How does your Eurocode 7 design	Tick one	□ Much more conservative □	Aara aapaan atiya		
20	compare with your previous	TICK ONE	□ Much more conservative □ 1 □ About the same □ Less cons			
	national practice?		□ About the same □ Less cons			
26	Please provide any other relevant	Free text				
20	information needed to understand					
	your solution to this design exercise					
			T www.eurocode7.com/etc10/E	xample 2.6		
			YOUR CONTRIBUTION!	<u></u>		
L						